Class EigenvalueDecomposition

  • All Implemented Interfaces:
    java.io.Serializable

    public class EigenvalueDecomposition
    extends java.lang.Object
    implements java.io.Serializable
    Eigenvalues and eigenvectors of a real matrix.

    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix.

    If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond().

    See Also:
    Serialized Form
    • Field Summary

      Fields 
      Modifier and Type Field Description
      private double cdivi  
      private double cdivr  
      private double[] d
      Arrays for internal storage of eigenvalues.
      private double[] e
      Arrays for internal storage of eigenvalues.
      private double[][] H
      Array for internal storage of nonsymmetric Hessenberg form.
      private boolean issymmetric
      Symmetry flag.
      private int n
      Row and column dimension (square matrix).
      private double[] ort
      Working storage for nonsymmetric algorithm.
      private double[][] V
      Array for internal storage of eigenvectors.
    • Field Detail

      • n

        private int n
        Row and column dimension (square matrix).
      • issymmetric

        private boolean issymmetric
        Symmetry flag.
      • d

        private double[] d
        Arrays for internal storage of eigenvalues.
      • e

        private double[] e
        Arrays for internal storage of eigenvalues.
      • V

        private double[][] V
        Array for internal storage of eigenvectors.
      • H

        private double[][] H
        Array for internal storage of nonsymmetric Hessenberg form.
      • ort

        private double[] ort
        Working storage for nonsymmetric algorithm.
      • cdivr

        private transient double cdivr
      • cdivi

        private transient double cdivi
    • Constructor Detail

      • EigenvalueDecomposition

        public EigenvalueDecomposition​(double[][] Arg)
      • EigenvalueDecomposition

        public EigenvalueDecomposition​(CVisDMatrix Arg)
        Check for symmetry, then construct the eigenvalue decomposition
        Parameters:
        A - Square matrix
    • Method Detail

      • tred2

        private void tred2()
      • tql2

        private void tql2()
      • orthes

        private void orthes()
      • cdiv

        private void cdiv​(double xr,
                          double xi,
                          double yr,
                          double yi)
      • hqr2

        private void hqr2()
      • getV

        public CDMatrix getV()
        Return the eigenvector matrix
        Returns:
        V
      • getRealEigenvalues

        public CDVector getRealEigenvalues()
      • getImagEigenvalues

        public CDVector getImagEigenvalues()
        Return the imaginary parts of the eigenvalues
        Returns:
        imag(diag(D))
      • getD

        public CVisDMatrix getD()
        Return the block diagonal eigenvalue matrix
        Returns:
        D