Package gov.nih.mipav.model.algorithms
Class AlgorithmDEMRI3.Fit25HModel
- java.lang.Object
-
- gov.nih.mipav.model.algorithms.NLConstrainedEngine
-
- gov.nih.mipav.model.algorithms.AlgorithmDEMRI3.Fit25HModel
-
- Enclosing class:
- AlgorithmDEMRI3
class AlgorithmDEMRI3.Fit25HModel extends NLConstrainedEngine
DOCUMENT ME!
-
-
Field Summary
Fields Modifier and Type Field Description private double[]
xData
private double[]
yData
-
Fields inherited from class gov.nih.mipav.model.algorithms.NLConstrainedEngine
a, absoluteConvergence, analyticalJacobian, bl, bounds, bu, ctrlMat, dyda, gues, internalScaling, iters, jacobian, maxIterations, nPts, outputMes, param, parameterConvergence, relativeConvergence, residuals, secondAllowed, stdv, tolerance
-
-
Constructor Summary
Constructors Constructor Description Fit25HModel(int nPoints, double[] xData, double[] yData, double[] initial)
Creates a new Fit25HModel object.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
driver()
Starts the analysis.void
dumpResults()
Display results of displaying exponential fitting parameters.void
fitToFunction(double[] a, double[] residuals, double[][] covarMat)
Fit to function - Math.pow((a[0] * Math.log(xSeries[i])),a[1]) + a[2]-
Methods inherited from class gov.nih.mipav.model.algorithms.NLConstrainedEngine
dumpTestResults, fitToTestFunction, getChiSquared, getExitStatus, getIterations, getParameters, getResiduals, statusMessage
-
-
-
-
Method Detail
-
driver
public void driver()
Starts the analysis.- Overrides:
driver
in classNLConstrainedEngine
-
dumpResults
public void dumpResults()
Display results of displaying exponential fitting parameters.
-
fitToFunction
public void fitToFunction(double[] a, double[] residuals, double[][] covarMat)
Fit to function - Math.pow((a[0] * Math.log(xSeries[i])),a[1]) + a[2]- Specified by:
fitToFunction
in classNLConstrainedEngine
- Parameters:
a
- The x value of the data point.residuals
- The best guess parameter values.covarMat
- The derivative values of y with respect to fitting parameters.
-
-