Class Polynomial1f
- java.lang.Object
- 
- WildMagic.LibFoundation.Mathematics.Polynomial1f
 
- 
- All Implemented Interfaces:
- java.io.Serializable
 
 public class Polynomial1f extends java.lang.Object implements java.io.SerializableLimited implementation of a floating-point polynomial of 1 variable.- See Also:
- Serialized Form
 
- 
- 
Field SummaryFields Modifier and Type Field Description protected float[]m_afCoeffDOCUMENT ME!protected intm_iDegreeDOCUMENT ME!private static floatms_fInvLog2DOCUMENT ME!private static floatms_fLog10DOCUMENT ME!private static floatms_fSqrt3DOCUMENT ME!private static floatms_fThirdDOCUMENT ME!private static floatms_fTwentySeventhDOCUMENT ME!private static longserialVersionUID
 - 
Constructor SummaryConstructors Constructor Description Polynomial1f()Creates a new Polynomial1f object.Polynomial1f(int iDegree)Creates a new Polynomial1f object.Polynomial1f(Polynomial1f kPoly)set this polynomial to have the same coefficients as those in the specified polynomial.
 - 
Method SummaryAll Methods Instance Methods Concrete Methods Modifier and Type Method Description voidAdd(Polynomial1f kPoly1, Polynomial1f kPoly2)sets this instance to the sum of two polynomial instances.booleanBisection(float fXMin, float fXMax, int iDigitsAccuracy, float[] afReturn)Returns Float which is null if no root is found; otherwise contains the value of the root.voidCopy(Polynomial1f kPoly)set this polynomial to have the same coefficients as those in the specified polynomial.floatEval(float fT)evaluate this polynomial for the specified value.floatGetCoeff(int i)DOCUMENT ME!intGetDegree()DOCUMENT ME!Polynomial1fGetDerivative()return new instance which is the derivative of this instance.floatGetRootBisection()Called by computeRadius, finds the root of the <= 8 degree polynomial through bisection method:intGetRootsOnInterval(float fXMin, float fXMax, float[] afRoot, int iDigitsAccuracy)afRoot should have length 2; returns number roots found, which are returned in the afRoot array.voidMult(Polynomial1f kPoly1, Polynomial1f kPoly2)set this polynomial to the product of two polynomials.intRootsDegree3(float[] afRoot)afRoot should have length 3 which is used to return the real roots found; returns 0 if no root can be found, otherwise returns the number of real roots found (1 or 3);voidScale(float fScalar)sets this instance to the scalar product with itself.voidSetCoeff(int i, float fValue)DOCUMENT ME!voidSub(Polynomial1f kPoly1, Polynomial1f kPoly2)sets this instance to the difference of two polynomial instances.
 
- 
- 
- 
Field Detail- 
serialVersionUIDprivate static final long serialVersionUID - See Also:
- Constant Field Values
 
 - 
ms_fInvLog2private static final float ms_fInvLog2 DOCUMENT ME!
 - 
ms_fLog10private static final float ms_fLog10 DOCUMENT ME!
 - 
ms_fThirdprivate static final float ms_fThird DOCUMENT ME!- See Also:
- Constant Field Values
 
 - 
ms_fSqrt3private static final float ms_fSqrt3 DOCUMENT ME!
 - 
ms_fTwentySeventhprivate static final float ms_fTwentySeventh DOCUMENT ME!- See Also:
- Constant Field Values
 
 - 
m_afCoeffprotected float[] m_afCoeff DOCUMENT ME!
 - 
m_iDegreeprotected int m_iDegree DOCUMENT ME!
 
- 
 - 
Constructor Detail- 
Polynomial1fpublic Polynomial1f() Creates a new Polynomial1f object.
 - 
Polynomial1fpublic Polynomial1f(int iDegree) Creates a new Polynomial1f object.- Parameters:
- iDegree- DOCUMENT ME!
 
 - 
Polynomial1fpublic Polynomial1f(Polynomial1f kPoly) set this polynomial to have the same coefficients as those in the specified polynomial.- Parameters:
- kPoly- DOCUMENT ME!
 
 
- 
 - 
Method Detail- 
Addpublic void Add(Polynomial1f kPoly1, Polynomial1f kPoly2) sets this instance to the sum of two polynomial instances.- Parameters:
- kPoly1- DOCUMENT ME!
- kPoly2- DOCUMENT ME!
 
 - 
Bisectionpublic boolean Bisection(float fXMin, float fXMax, int iDigitsAccuracy, float[] afReturn)Returns Float which is null if no root is found; otherwise contains the value of the root.- Parameters:
- fXMin- DOCUMENT ME!
- fXMax- DOCUMENT ME!
- iDigitsAccuracy- DOCUMENT ME!
- Returns:
- DOCUMENT ME!
 
 - 
Copypublic void Copy(Polynomial1f kPoly) set this polynomial to have the same coefficients as those in the specified polynomial.- Parameters:
- kPoly- DOCUMENT ME!
 
 - 
Evalpublic float Eval(float fT) evaluate this polynomial for the specified value.- Parameters:
- fT- DOCUMENT ME!
- Returns:
- DOCUMENT ME!
 
 - 
GetCoeffpublic float GetCoeff(int i) DOCUMENT ME!- Parameters:
- i- DOCUMENT ME!
- Returns:
- DOCUMENT ME!
 
 - 
GetDegreepublic int GetDegree() DOCUMENT ME!- Returns:
- DOCUMENT ME!
 
 - 
GetDerivativepublic Polynomial1f GetDerivative() return new instance which is the derivative of this instance.- Returns:
- DOCUMENT ME!
 
 - 
GetRootBisectionpublic float GetRootBisection() Called by computeRadius, finds the root of the <= 8 degree polynomial through bisection method:- Returns:
- DOCUMENT ME!
 
 - 
GetRootsOnIntervalpublic int GetRootsOnInterval(float fXMin, float fXMax, float[] afRoot, int iDigitsAccuracy)afRoot should have length 2; returns number roots found, which are returned in the afRoot array.- Parameters:
- fXMin- DOCUMENT ME!
- fXMax- DOCUMENT ME!
- afRoot- DOCUMENT ME!
- iDigitsAccuracy- DOCUMENT ME!
- Returns:
- DOCUMENT ME!
 
 - 
Multpublic void Mult(Polynomial1f kPoly1, Polynomial1f kPoly2) set this polynomial to the product of two polynomials.- Parameters:
- kPoly1- DOCUMENT ME!
- kPoly2- DOCUMENT ME!
 
 - 
RootsDegree3public int RootsDegree3(float[] afRoot) afRoot should have length 3 which is used to return the real roots found; returns 0 if no root can be found, otherwise returns the number of real roots found (1 or 3);- Parameters:
- afRoot- DOCUMENT ME!
- Returns:
- DOCUMENT ME!
 
 - 
Scalepublic void Scale(float fScalar) sets this instance to the scalar product with itself.- Parameters:
- fScalar- DOCUMENT ME!
 
 - 
SetCoeffpublic void SetCoeff(int i, float fValue)DOCUMENT ME!- Parameters:
- i- DOCUMENT ME!
- fValue- DOCUMENT ME!
 
 - 
Subpublic void Sub(Polynomial1f kPoly1, Polynomial1f kPoly2) sets this instance to the difference of two polynomial instances.- Parameters:
- kPoly1- DOCUMENT ME!
- kPoly2- DOCUMENT ME!
 
 
- 
 
-