Class DoubleDouble

  • All Implemented Interfaces:
    java.io.Serializable, java.lang.Cloneable, java.lang.Comparable

    public class DoubleDouble
    extends java.lang.Object
    implements java.io.Serializable, java.lang.Comparable, java.lang.Cloneable
    Immutable, extended-precision floating-point numbers which maintain 106 bits (approximately 30 decimal digits) of precision.

    A DoubleDouble uses a representation containing two double-precision values. A number x is represented as a pair of doubles, x.hi and x.lo, such that the number represented by x is x.hi + x.lo, where

        |x.lo| <= 0.5*ulp(x.hi)
     
    and ulp(y) means "unit in the last place of y". The basic arithmetic operations are implemented using convenient properties of IEEE-754 floating-point arithmetic.

    The range of values which can be represented is the same as in IEEE-754. The precision of the representable numbers is twice as great as IEEE-754 double precision.

    The correctness of the arithmetic algorithms relies on operations being performed with standard IEEE-754 double precision and rounding. This is the Java standard arithmetic model, but for performance reasons Java implementations are not constrained to using this standard by default. Some processors (notably the Intel Pentium architecure) perform floating point operations in (non-IEEE-754-standard) extended-precision. A JVM implementation may choose to use the non-standard extended-precision as its default arithmetic mode. To prevent this from happening, this code uses the Java strictfp modifier, which forces all operations to take place in the standard IEEE-754 rounding model.

    The API provides a value-oriented interface. DoubleDouble values are immutable; operations on them return new objects carrying the result of the operation. This provides a much simpler semantics for writing DoubleDouble expressions, and Java memory management is efficient enough that this imposes very little performance penalty.

    This implementation uses algorithms originally designed variously by Knuth, Kahan, Dekker, and Linnainmaa. Douglas Priest developed the first C implementation of these techniques. Other more recent C++ implementation are due to Keith M. Briggs and David Bailey et al.

    References

    • Priest, D., Algorithms for Arbitrary Precision Floating Point Arithmetic, in P. Kornerup and D. Matula, Eds., Proc. 10th Symposium on Computer Arithmetic, IEEE Computer Society Press, Los Alamitos, Calif., 1991.
    • Yozo Hida, Xiaoye S. Li and David H. Bailey, Quad-Double Arithmetic: Algorithms, Implementation, and Application, manuscript, Oct 2000; Lawrence Berkeley National Laboratory Report BNL-46996.
    • David Bailey, High Precision Software Directory; http://crd.lbl.gov/~dhbailey/mpdist/index.html

    This class is based on the DoubleDouble created by Martin Davis and distributed under the following license:
     Copyright (c) 2008-2012 Martin Davis. All Rights Reserved.
     
     Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
     following conditions are met:
     
     1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
     disclaimer.
     
     2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
     following disclaimer in the documentation and/or other materials provided with the distribution.
     
     3. The name of the author may not be used to endorse or promote products derived from this software without specific
     prior written permission.
     
     THIS SOFTWARE IS PROVIDED BY Martin Davis "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     POSSIBILITY OF SUCH DAMAGE.
     
    Author:
    Martin Davis
    See Also:
    Serialized Form
    • Field Detail

      • PI

        public static final DoubleDouble PI
        The value nearest to the constant Pi.
      • TWO_PI

        public static final DoubleDouble TWO_PI
        The value nearest to the constant 2 * Pi.
      • PI_2

        public static final DoubleDouble PI_2
        The value nearest to the constant Pi / 2.
      • E

        public static final DoubleDouble E
        The value nearest to the constant e (the natural logarithm base).
      • NaN

        public static final DoubleDouble NaN
        A value representing the result of an operation which does not return a valid number.
      • POSITIVE_INFINITY

        public static final DoubleDouble POSITIVE_INFINITY
      • NEGATIVE_INFINITY

        public static final DoubleDouble NEGATIVE_INFINITY
      • EPS

        public static final double EPS
        The smallest representable relative difference between two {link @ DoubleDouble} values
        See Also:
        Constant Field Values
      • SPLIT

        private static final double SPLIT
        The value to split a double-precision value on during multiplication
        See Also:
        Constant Field Values
      • hi

        public double hi
        The high-order component of the double-double precision value.
      • lo

        public double lo
        The low-order component of the double-double precision value.
      • SCI_NOT_EXPONENT_CHAR

        private static final java.lang.String SCI_NOT_EXPONENT_CHAR
        See Also:
        Constant Field Values
    • Constructor Detail

      • DoubleDouble

        public DoubleDouble()
        Creates a new DoubleDouble with value 0.0.
      • DoubleDouble

        public DoubleDouble​(double x)
        Creates a new DoubleDouble with value x.
        Parameters:
        x - the value to initialize
      • DoubleDouble

        public DoubleDouble​(double hi,
                            double lo)
        Creates a new DoubleDouble with value (hi, lo).
        Parameters:
        hi - the high-order component
        lo - the high-order component
      • DoubleDouble

        public DoubleDouble​(DoubleDouble dd)
        Creates a new DoubleDouble with value equal to the argument.
        Parameters:
        dd - the value to initialize
      • DoubleDouble

        public DoubleDouble​(java.lang.String str)
                     throws java.lang.NumberFormatException
        Creates a new DoubleDouble with value equal to the argument.
        Parameters:
        str - the value to initialize by
        Throws:
        java.lang.NumberFormatException - if str is not a valid representation of a number
    • Method Detail

      • valueOf

        public static DoubleDouble valueOf​(java.lang.String str)
                                    throws java.lang.NumberFormatException
        Converts the string argument to a DoubleDouble number.
        Parameters:
        str - a string containing a representation of a numeric value
        Returns:
        the extended precision version of the value
        Throws:
        java.lang.NumberFormatException - if s is not a valid representation of a number
      • valueOf

        public static DoubleDouble valueOf​(double x)
        Converts the double argument to a DoubleDouble number.
        Parameters:
        x - a numeric value
        Returns:
        the extended precision version of the value
      • clone

        public java.lang.Object clone()
        Creates and returns a copy of this value.
        Overrides:
        clone in class java.lang.Object
        Returns:
        a copy of this value
      • init

        private void init​(double x)
      • init

        private void init​(double hi,
                          double lo)
      • add

        public DoubleDouble add​(DoubleDouble y)
        Returns a DoubleDouble whose value is (this + y).
        Parameters:
        y - the addend
        Returns:
        (this + y)
      • selfAdd

        private DoubleDouble selfAdd​(DoubleDouble y)
        Adds the argument to the value of this. To prevent altering constants, this method must only be used on values known to be newly created.
        Parameters:
        y - the addend
        Returns:
        this, with its value incremented by y
      • subtract

        public DoubleDouble subtract​(DoubleDouble y)
        Returns a DoubleDouble whose value is (this - y).
        Parameters:
        y - the subtrahend
        Returns:
        (this - y)
      • negate

        public DoubleDouble negate()
        Returns a DoubleDouble whose value is -this.
        Returns:
        -this
      • multiply

        public DoubleDouble multiply​(DoubleDouble y)
        Returns a DoubleDouble whose value is (this * y).
        Parameters:
        y - the multiplicand
        Returns:
        (this * y)
      • selfMultiply

        private DoubleDouble selfMultiply​(DoubleDouble y)
        Multiplies this by the argument, returning this. To prevent altering constants, this method must only be used on values known to be newly created.
        Parameters:
        y - a DoubleDouble value to multiply by
        Returns:
        this
      • divide

        public DoubleDouble divide​(DoubleDouble y)
        Returns a DoubleDouble whose value is (this / y).
        Parameters:
        y - the divisor
        Returns:
        (this / y)
      • reciprocal

        public DoubleDouble reciprocal()
        Returns a DoubleDouble whose value is 1 / this.
        Returns:
        the reciprocal of this value
      • floor

        public DoubleDouble floor()
        Returns the largest (closest to positive infinity) value that is not greater than the argument and is equal to a mathematical integer. Special cases:
        • If this value is NaN, returns NaN.
        Returns:
        the largest (closest to positive infinity) value that is not greater than the argument and is equal to a mathematical integer.
      • ceil

        public DoubleDouble ceil()
        Returns the smallest (closest to negative infinity) value that is not less than the argument and is equal to a mathematical integer. Special cases:
        • If this value is NaN, returns NaN.
        Returns:
        the smallest (closest to negative infinity) value that is not less than the argument and is equal to a mathematical integer.
      • signum

        public int signum()
        Returns an integer indicating the sign of this value.
        • if this value is > 0, returns 1
        • if this value is < 0, returns -1
        • if this value is = 0, returns 0
        • if this value is NaN, returns 0
        Returns:
        an integer indicating the sign of this value
      • rint

        public DoubleDouble rint()
        Rounds this value to the nearest integer. The value is rounded to an integer by adding 1/2 and taking the floor of the result. Special cases:
        • If this value is NaN, returns NaN.
        Returns:
        this value rounded to the nearest integer
      • trunc

        public DoubleDouble trunc()
        Returns the integer which is largest in absolute value and not further from zero than this value. Special cases:
        • If this value is NaN, returns NaN.
        Returns:
        the integer which is largest in absolute value and not further from zero than this value
      • abs

        public DoubleDouble abs()
        Returns the absolute value of this value. Special cases:
        • If this value is NaN, it is returned.
        Returns:
        the absolute value of this value
      • sqr

        public DoubleDouble sqr()
        Computes the square of this value.
        Returns:
        the square of this value.
      • sqrt

        public DoubleDouble sqrt()
        Computes the positive square root of this value. If the number is NaN or negative, NaN is returned.
        Returns:
        the positive square root of this number. If the argument is NaN or less than zero, the result is NaN.
      • exp

        public DoubleDouble exp()
        For all real, x exp(x) = 1 + x + x**2/2! + x**3/3! + x**4/4! + ...
        Returns:
      • log

        public DoubleDouble log()
        For x > 0, ratio = (x-1)/(x+1), log(x) = 2(ratio + ratio**3/3 + ratio**5/5 + ...)
        Returns:
      • sinh

        public DoubleDouble sinh()
        For all real x, sinh(x) = x + x**3/3! + x**5/5! + x**7/7! + ... + x**(2n+1)/(2n+1)! + ...
        Returns:
      • cosh

        public DoubleDouble cosh()
        For all real x, cosh(x) = 1 + x**2/2! + x**4/4! + x**6/6! + ... + x**(2*n)/((2*n)!) + ...
        Returns:
      • sin

        public DoubleDouble sin()
        For all real x, sin(x) = x - x**3/3! + x**5/5! - x**7/7! + ...
        Returns:
      • cos

        public DoubleDouble cos()
        For all real x, cos(x) = 1 - x**2/2! + x**4/4! - x**6/6! + ...
        Returns:
      • tan

        public DoubleDouble tan()
        For -PI/2 < x < PI/2, tan(x) = x + (x**3)/3 + 2*(x**5)/15 + 17*(x**7)/315 + 62*(x**9)/2835 + ... + (2**(2*n))*((2**(2*n)) - 1)*Bn*(x**(2*n-1))/((2*n)!) + ...
        Returns:
      • asin

        public DoubleDouble asin()
        For all -1 < x < 1, arcsin(x) = x + x**3/(2*3) + (1 * 3 * x**5)/(2 * 4 * 5) + (1 * 3 * 5 * x**7)/(2 * 4 * 6 * 7) + ...
        Returns:
      • acos

        public DoubleDouble acos()
        For all -1 < x < 1, arccos(x) = PI/2 - arcsin(x)
        Returns:
      • atan2

        public DoubleDouble atan2​(DoubleDouble x)
        The atan of this(the imaginary y component) divided by the real component x Value will range from -PI to PI. Strays a bit from actual atan2 definition which recognizes positive zero and negative zero. Here both positive zero and negative zero are combined as zero.
        Parameters:
        x -
        Returns:
      • atan

        public DoubleDouble atan()
        For -1 < x < 1, arctan(x) = x - x**3/3 + x**5/5 - x**7/7 + ... For x > 1, arctan(x) = PI/2 - 1/x + 1/(3*x**3) - 1/(5*x**5) +1/(7*x**7) - ... * For x < -1, arctan(x) = -PI/2 - 1/x + 1/(3*x**3) - 1/(5*x**5) +1/(7*x**7) - ...
        Returns:
      • cisia

        public void cisia​(DoubleDouble x,
                          DoubleDouble Ci,
                          DoubleDouble Si)
        This is a port of subroutine CISIA which computes cosine and sine integrals from Computation of Special Functions by Shanjie Zhang and Jianming Jin. Waiting for Professor Jin's reply. Dear Professor Jianming Jin: There is an error in subroutine CISIA in Computation of Special Functions. Under ELSE IF (x .LE. 32.0D0) THEN in the DO 25 K =M,1,-1 loop the values of BJ(1) thru BJ(M) are set. You then have the loop DO 30 K=2,M,2 30 XS=XS+2.0D0*BJ(K+1) so for M even the value of BJ(M+1) will be used, but the value of BJ(M+1) has not been set. Sincerely, William Gandler
      • factorial

        public DoubleDouble factorial​(int fac)
        Parameters:
        fac -
        Returns:
      • pow

        public DoubleDouble pow​(int exp)
        Computes the value of this number raised to an integral power. Follows semantics of Java Math.pow as closely as possible.
        Parameters:
        exp - the integer exponent
        Returns:
        x raised to the integral power exp
      • pow

        public DoubleDouble pow​(double x)
        Parameters:
        x - the double exponent
        Returns:
        a raised to the double power x For a > 0, base = x * log(a), a**x = 1 + base + base**2/2! + base**3/3! + ...
      • pow

        public DoubleDouble pow​(DoubleDouble x)
        Parameters:
        x - the DoubleDouble exponent
        Returns:
        a raised to the DoubleDouble power x For a > 0, base = x * log(a), a**x = 1 + base + base**2/2! + base**3/3! + ...
      • doubleValue

        public double doubleValue()
        Converts this value to the nearest double-precision number.
        Returns:
        the nearest double-precision number to this value
      • intValue

        public int intValue()
        Converts this value to the nearest integer.
        Returns:
        the nearest integer to this value
      • isPositiveFinite

        public boolean isPositiveFinite()
      • isNegativeFinite

        public boolean isNegativeFinite()
      • isPositiveInfinity

        public boolean isPositiveInfinity()
      • isNegativeInfinity

        public boolean isNegativeInfinity()
      • isZero

        public boolean isZero()
        Tests whether this value is equal to 0.
        Returns:
        true if this value is equal to 0
      • isNegative

        public boolean isNegative()
        Tests whether this value is less than 0.
        Returns:
        true if this value is less than 0
      • isPositive

        public boolean isPositive()
        Tests whether this value is greater than 0.
        Returns:
        true if this value is greater than 0
      • isNaN

        public boolean isNaN()
        Tests whether this value is NaN.
        Returns:
        true if this value is NaN
      • isInfinite

        public boolean isInfinite()
      • equals

        public boolean equals​(DoubleDouble y)
        Tests whether this value is equal to another DoubleDouble value.
        Parameters:
        y - a DoubleDouble value
        Returns:
        true if this value = y
      • gt

        public boolean gt​(DoubleDouble y)
        Tests whether this value is greater than another DoubleDouble value.
        Parameters:
        y - a DoubleDouble value
        Returns:
        true if this value > y
      • ge

        public boolean ge​(DoubleDouble y)
        Tests whether this value is greater than or equals to another DoubleDouble value.
        Parameters:
        y - a DoubleDouble value
        Returns:
        true if this value >= y
      • lt

        public boolean lt​(DoubleDouble y)
        Tests whether this value is less than another DoubleDouble value.
        Parameters:
        y - a DoubleDouble value
        Returns:
        true if this value < y
      • le

        public boolean le​(DoubleDouble y)
        Tests whether this value is less than or equal to another DoubleDouble value.
        Parameters:
        y - a DoubleDouble value
        Returns:
        true if this value <= y
      • compareTo

        public int compareTo​(java.lang.Object o)
        Compares two DoubleDouble objects numerically.
        Specified by:
        compareTo in interface java.lang.Comparable
        Returns:
        -1,0 or 1 depending on whether this value is less than, equal to or greater than the value of o
      • dump

        public java.lang.String dump()
        Dumps the components of this number to a string.
        Returns:
        a string showing the components of the number
      • toString

        public java.lang.String toString()
        Returns a string representation of this number, in either standard or scientific notation. If the magnitude of the number is in the range [ 10-3, 108 ] standard notation will be used. Otherwise, scientific notation will be used.
        Overrides:
        toString in class java.lang.Object
        Returns:
        a string representation of this number
      • toStandardNotation

        public java.lang.String toStandardNotation()
        Returns the string representation of this value in standard notation.
        Returns:
        the string representation in standard notation
      • toSciNotation

        public java.lang.String toSciNotation()
        Returns the string representation of this value in scientific notation.
        Returns:
        the string representation in scientific notation
      • extractSignificantDigits

        private java.lang.String extractSignificantDigits​(boolean insertDecimalPoint,
                                                          int[] magnitude)
        Extracts the significant digits in the decimal representation of the argument. A decimal point may be optionally inserted in the string of digits (as long as its position lies within the extracted digits - if not, the caller must prepend or append the appropriate zeroes and decimal point).
        Parameters:
        y - the number to extract ( >= 0)
        decimalPointPos - the position in which to insert a decimal point
        Returns:
        the string containing the significant digits and possibly a decimal point
      • stringOfChar

        private static java.lang.String stringOfChar​(char ch,
                                                     int len)
        Creates a string of a given length containing the given character
        Parameters:
        ch - the character to be repeated
        len - the len of the desired string
        Returns:
        the string
      • getSpecialNumberString

        private java.lang.String getSpecialNumberString()
        Returns the string for this value if it has a known representation. (E.g. NaN or 0.0)
        Returns:
        the string for this special number
      • magnitude

        private static int magnitude​(double x)
        Determines the decimal magnitude of a number. The magnitude is the exponent of the greatest power of 10 which is less than or equal to the number.
        Parameters:
        x - the number to find the magnitude of
        Returns:
        the decimal magnitude of x
      • parse

        public static DoubleDouble parse​(java.lang.String str)
                                  throws java.lang.NumberFormatException
        Converts a string representation of a real number into a DoubleDouble value. The format accepted is similar to the standard Java real number syntax. It is defined by the following regular expression:
         [+|-] {digit} [ . {digit} ] [ ( e | E ) [+|-] {digit}+
         
        Parameters:
        str - the string to parse
        Returns:
        the value of the parsed number
        Throws:
        java.lang.NumberFormatException - if str is not a valid representation of a number