Class Integration2

    • Field Summary

      Fields 
      Modifier and Type Field Description
      private double[] abserr
      Estimate of the absolute value of the error, which should equal or exceed abs(actual integral - result).
      private double actualAnswer  
      private double alfa
      parameter in the weight function, alfa.gt.(-1) if alfa.le.(-1), the routine will end with ier[0] = 6.
      private double[] alist
      The left end points of the subintervals in the partition of the given integration range (lower, upper).
      private double beta
      parameter in the weight function, beta.gt.(-1) if beta.le.(-1), the routine will end with ier[0] = 6.
      private double[] blist
      The right end points of the subintervals in the partition of the given integration range (lower, upper).
      private double bound
      finite bound of integration range used in dqagie (has no meaning if interval is doubly-infinite).
      private double[] breakPoints
      Used in dqagpe This array must always be >= 2 in length.
      private double c
      Parameter in the weight function, c !
      private double[][] chebmo
      array of dimension (maxp1,25) containing the chebyshev moments
      protected static int DQAGE
      Integral without singularities, discontinuities, or infinite bounds.
      protected static int DQAGIE
      Integral over (bound, +infinity), (-infinity, bound), or (-infinity, +infinity).
      protected static int DQAGPE
      Integral over (lower, upper) with user specified break points.
      protected static int DQAGSE
      Integral over (lower, upper) which can handle end point singularities.
      protected static int DQAWCE
      Cauchy principal value
      protected static int DQAWFE
      Automatic integrator, special-purpose, fourier integrals
      protected static int DQAWOE
      Automatic integrator, integrand with oscillatory cosine or sine factor
      protected static int DQAWSE
      Adaptive integrator for integrands with algebraic or logarithmic singularities at endpoints.
      protected static int DQK15
      Gauss-Kronod quadrature rule
      protected static int DQK21
      Gauss-Kronod quadrature rule
      protected static int DQK31
      Gauss-Kronod quadrature rule
      protected static int DQK41
      Gauss-Kronod quadrature rule
      protected static int DQK51
      Gauss-Kronod quadrature rule
      protected static int DQK61
      Gauss-Kronod quadrature rule
      protected static int DQNG
      Non-adaptive integration.
      private double[] elist
      Estimates of the absolute errors on the subintervals.
      private double epmach
      epmach = D1MACH(4) Machine epmach is the smallest positive epmach such that (1.0 + epmach) !
      private double epsabs
      If epsabs <= 0.0 and epsrel < Math.max(50*relative machine accuracy, 5.0E-29), the routine will exit with an error message.
      private double epsrel
      DOCUMENT ME!
      private double[] erlst
      In dqawfe vector of dimension at least limlst erlst[k] contains the error estimate corresponding wiht rstlst[k].
      private double gamma  
      private int icall
      if dqawoe is to be used only once, icall must be set to 1. assume that during this call, the c chebyshev moments (for clenshaw-curtis integration c of degree 24) have been computed for intervals of c lenghts (abs(b-a))*2**(-l), l=0,1,2,...momcom-1. c if icall.gt.1 this means that dqawoe has been c called twice or more on intervals of the same c length abs(b-a). the chebyshev moments already c computed are then re-used in subsequent calls. c if icall.lt.1, the routine will end with ier[0] = 6.
      private int[] ier
      ier[0] = 0 for normal and reliable termination of the routine.
      private int[] ierlst
      In dqawfe vector of dimension at least limlst ierlst[k] contains the error flag corresponding with rstlst[k].
      private int inf
      In dqagie indicates the kind of integration range involved inf = 1 corresponds to (bound, +infinity) inf = -1 corresponds to (-infinity, bound) inf = 2 corresponds to (-infinity, +infinity).
      private int integr
      With dqawoe: indicates which of the weight functions is to be used integr = 1 w(x) = cos(omega*x) integr = 2 w(x) = sin(omega*x) if integr.ne.1 and integr.ne.2, the routine will end with ier[0] = 6.
      private int[] iord
      The first k elements of iord are pointers to the error estimates over the subintervals, such that elist[iord[0]], ..., elist[iord[k-1]] form a decreasing sequence, with k = last if last <= (limit/2 + 2) , and k = limit + 1 - last otheriwse.
      private int key
      In dqage key selects the local integration rule A gauss-kronrod pair is used with 7 - 15 points if key < 2 10 - 21 points if key = 2 15 - 31 points if key = 3 20 - 41 points if key = 4 25 - 51 points if key = 5 30 - 61 points if key > 5.
      private int last
      The number of subintervals actually called in the subdivision process.
      private int[] level
      level contains the subdivision levels of the subinterval, i.e., if (aa, bb) is a subinterval of (p1, p2) where p1 as well as p2 is a user-provided break point or integration limit, then (aa, bb) has level 1 if abs(bb - aa) = abs(p2 - p1) * 2**(-1).
      private int limit
      Gives an upper bound on the number of subintervals in the partition of lower, upper.
      private int limlst
      In dqawfe limlst gives an upper bound on the number of cycles, limlst >= 1.
      private double lower
      DOCUMENT ME!
      private int lst
      In dqawfe number of subintervals needed for the integration.
      private int maxp1
      gives an upper bound on the number of chebyshev c moments which can be stored, i.e. for the c intervals of lenghts abs(b-a)*2**(-l), c l=0,1, ..., maxp1-2, maxp1.ge.1. c if maxp1.lt.1, the routine will end with ier[0] = 6.
      private int momcom
      indicating that the chebyshev moments c have been computed for intervals of lengths c (abs(b-a))*2**(-l), l=0,1,2, ..., momcom-1, c momcom.lt.maxp1
      private int[] ndin
      After the first integration over the intervals (pts[i], pts[i+1]), i = 0, 1, ..., npts2 - 2, the error estimates over some of the intervals may have been increased artificially, in order to put their subdivision forward.
      private int[] neval
      Number of integrand evaluations.
      private int[] nnlog
      vector of dimension at least limit, containing the c subdivision levels of the subintervals, i.e. c iwork(i) = l means that the subinterval c numbered i is of length abs(b-a)*2**(1-l)
      private int npts
      npts = npts2 - 2.
      private int npts2
      npts2 = breakPoints.length.
      private double oflow
      D1MACH(2) = 2**(emax)*(1 - 2**(-doubleDigits)) = 2**1024*(1 - 2**-53) D1MACH(2) = Double.MAX_VALUE.
      private double omega
      parameter in the integrand weight function
      private double[] pts
      Integration limits and the break points of the interval in ascending sequence.
      private double[] resabs  
      private double[] resasc  
      private double[] result
      Approximation to the integral.
      private double[] rlist
      The integral approximations of the subintervals.
      private int routine
      DOCUMENT ME!
      private double[] rslst
      In dqawfe vector of dimension at least limlst. rslst[k-1] contains the integral contribution over the interval (a+(k-1)c, a+kc), where c = (2*int(abs(omega))+1)*pi/abs(omega), k = 1, 2, ..., lst.
      private boolean selfTest  
      private int testCase  
      private double uflow
      DOCUMENT ME!
      private double upper
      DOCUMENT ME!
    • Constructor Summary

      Constructors 
      Constructor Description
      Integration2()
      Constructor for running self tests.
      Integration2​(double lower, double upper, double c, int routine, double epsabs, double epsrel, int limit)
      Constructor for Integration2 Used with routine = DQAWCE.
      Integration2​(double lower, double upper, int routine, double[] breakPoints, double epsabs, double epsrel, int limit)
      Constructor for Integration Used with routine = DQAGPE.
      Integration2​(double lower, double upper, int routine, double epsabs, double epsrel)
      Constructor for Integration Used with routine = DQNG.
      Integration2​(double lower, double upper, int routine, double epsabs, double epsrel, int limit)
      Constructor for Integration Used with routine = DQAGSE.
      Integration2​(double lower, double upper, int routine, double alfa, double beta, int integr, double epsabs, double epsrel, int limit)
      This constructor must be used with routine DQAWSE.
      Integration2​(double lower, double upper, int routine, double omega, int integr, double epsabs, double epsrel, int limit, int icall, int maxp1)
      Constructor must be used with routine dqawoe
      Integration2​(double lower, double upper, int routine, int key, double epsabs, double epsrel, int limit)
      Constructor for Integration Used with routine = DQAGE.
      Integration2​(double lower, int routine, double omega, int integr, double epsabs, int limlst, int limit, int maxp1)
      Constructor must be used with routine dqawfe
      Integration2​(double bound, int routine, int inf, double epsabs, double epsrel, int limit)
      Constructor used with routine = DQAGIE.
    • Method Summary

      All Methods Instance Methods Abstract Methods Concrete Methods 
      Modifier and Type Method Description
      private void dgtsl​(int n, double[] c, double[] d, double[] e, double[] b, int[] info)
      This is a port of the FORTRAN routine whose header is given below: c c dgtsl given a general tridiagonal matrix and a right hand c side will find the solution. c c on entry c c n integer c is the order of the tridiagonal matrix. c c c double precision(n) c is the subdiagonal of the tridiagonal matrix. c c(2) through c(n) should contain the subdiagonal. c on output c is destroyed. c c d double precision(n) c is the diagonal of the tridiagonal matrix. c on output d is destroyed. c c e double precision(n) c is the superdiagonal of the tridiagonal matrix. c e(1) through e(n-1) should contain the superdiagonal. c on output e is destroyed. c c b double precision(n) c is the right hand side vector. c c on return c c b is the solution vector. c c info integer c = 0 normal value. c = k if the k-th element of the diagonal becomes c exactly zero. the subroutine returns when c this is detected. c c linpack. this version dated 08/14/78 . c jack dongarra, argonne national laboratory.
      private void dqage()
      This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqage c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a1 c***keywords automatic integrator, general-purpose, c integrand examinator, globally adaptive, c gauss-kronrod c***author piessens,robert,appl. math.
      void dqagie​(double bound, int inf, double epsrel)
      This is a port of the orginal FORTRAN code whose header is given below: c***begin prologue dqagie c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a1,h2a4a1 c***keywords automatic integrator, infinite intervals, c general-purpose, transformation, extrapolation, c globally adaptive c***author piessens,robert,appl. math & progr. div - k.u.leuven c de doncker,elise,appl. math & progr. div - k.u.leuven c***purpose the routine calculates an approximation result to a given c integral i = integral of f over (bound,+infinity) c or i = integral of f over (-infinity,bound) c or i = integral of f over (-infinity,+infinity), c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)) c***description c c integration over infinite intervals c standard fortran subroutine
      void dqagpe()
      dqagpe.
      private void dqagse()
      This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqagse c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a1 c***keywords automatic integrator, general-purpose, c (end point) singularities, extrapolation, c globally adaptive c***author piessens,robert,appl. math.
      private void dqawce()
      This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqawce c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1,j4 c***keywords automatic integrator, special-purpose, c cauchy principal value, clenshaw-curtis method c***author piessens,robert,appl.
      private void dqawfe()
      This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqawfe c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a1 c***keywords automatic integrator, special-purpose, c fourier integrals, c integration between zeros with dqawoe, c convergence acceleration with dqelg c***author piessens,robert,appl. math.
      private void dqawoe​(double a, double b, double epsabs, double epsrel, int icall, double[] result, double[] abserr, int[] neval, int[] ier)
      This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqawoe c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1 c***keywords automatic integrator, special-purpose, c integrand with oscillatory cos or sin factor, c clenshaw-curtis method, (end point) singularities, c extrapolation, globally adaptive c***author piessens,robert,appl. math.
      private void dqawse()
      This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqawse c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1 c***keywords automatic integrator, special-purpose, c algebraico-logarithmic end point singularities, c clenshaw-curtis method c***author piessens,robert,appl. math.
      private void dqc25c​(double a, double b, double c, double[] result, double[] abserr, int[] krul, int[] neval)
      This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqc25c c***date written 810101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a2,j4 c***keywords 25-point clenshaw-curtis integration c***author piessens,robert,appl. math.
      private void dqc25f​(double a, double b, double omega, int nrmom, int ksave, double[] result, double[] abserr, int[] neval, double[] resabs, double[] resasc)
      This is a port of the original FORTRAN whose header is given below: c***begin prologue dqc25f c***date written 810101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a2 c***keywords integration rules for functions with cos or sin c factor, clenshaw-curtis, gauss-kronrod c***author piessens,robert,appl. math.
      private void dqc25s​(double bl, double br, double[] ri, double[] rj, double[] rg, double[] rh, double[] result, double[] abserr, double[] resasc, int[] nev)
      This is a port of the original FORTRAN whose header is given below: c***begin prologue dqc25s c***date written 810101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a2 c***keywords 25-point clenshaw-curtis integration c***author piessens,robert,appl. math.
      private void dqcheb​(double[] x, double[] fval, double[] cheb12, double[] cheb24)
      This is a port of the original FORTRAN whose header is given below: c***begin prologue dqcheb c***refer to dqc25c,dqc25f,dqc25s c***routines called (none) c***revision date 830518 (yymmdd) c***keywords chebyshev series expansion, fast fourier transform c***author piessens,robert,appl. math.
      private void dqelg​(int[] n, double[] epstab, double[] result, double[] abserr, double[] res31a, int[] nres)
      This is a port of the original FORTRAN whose header is given below: c***begin prologue dqelg c***refer to dqagie,dqagoe,dqagpe,dqagse c***routines called d1mach c***revision date 830518 (yymmdd) c***keywords epsilon algorithm, convergence acceleration, c extrapolation c***author piessens,robert,appl. math.
      private void dqk15​(double a, double b, double[] result, double[] abserr, double[] resabs, double[] resasc)
      The is a port of the original FORTRAN whose header is given below: c***begin prologue dqk15 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 15-point gauss-kronrod rules c***author piessens,robert,appl. math.
      private void dqk15i​(double boun, int inf, double a, double b, double[] result, double[] abserr, double[] resabs, double[] resasc)
      This is a port of the original FORTRAN whose header is given below: c***begin prologue dqk15i c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a2,h2a4a2 c***keywords 15-point transformed gauss-kronrod rules c***author piessens,robert,appl. math.
      private void dqk15w​(double p1, double a, double b, double[] result, double[] abserr, double[] resabs, double[] resasc)
      This a a port of the original FORTRAN whose header is given below: c***begin prologue dqk15w c***date written 810101 (yymmdd) c***revision date 830518 (mmddyy) c***category no. h2a2a2 c***keywords 15-point gauss-kronrod rules c***author piessens,robert,appl. math.
      private void dqk21​(double a, double b, double[] result, double[] abserr, double[] resabs, double[] resasc)
      This is a port of the original FORTRAN whose header is given below: c***begin prologue dqk21 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 21-point gauss-kronrod rules c***author piessens,robert,appl. math.
      private void dqk31​(double a, double b, double[] result, double[] abserr, double[] resabs, double[] resasc)
      This is a port of the original FORTRAN whose header is given below: c***begin prologue dqk31 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 31-point gauss-kronrod rules c***author piessens,robert,appl. math.
      private void dqk41​(double a, double b, double[] result, double[] abserr, double[] resabs, double[] resasc)
      This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqk41 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 41-point gauss-kronrod rules c***author piessens,robert,appl. math.
      private void dqk51​(double a, double b, double[] result, double[] abserr, double[] resabs, double[] resasc)
      This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqk51 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 51-point gauss-kronrod rules c***author piessens,robert,appl. math.
      private void dqk61​(double a, double b, double[] result, double[] abserr, double[] resabs, double[] resasc)
      This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqk61 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 61-point gauss-kronrod rules c***author piessens,robert,appl. math.
      private void dqmomo​(double[] ri, double[] rj, double[] rg, double[] rh)
      This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqmomo c***date written 820101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1,c3a2 c***keywords modified chebyshev moments c***author piessens,robert,appl. math.
      private void dqng()
      This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqng c***date written 800101 (yymmdd) c***revision date 810101 (yymmdd) c***category no. h2a1a1 c***keywords automatic integrator, smooth integrand, c non-adaptive, gauss-kronrod(patterson) c***author piessens,robert,appl. math.
      private void dqpsrt​(int limit, int last, int[] maxErr, double[] ermax, double[] elist, int[] iord, int[] nrmax)
      This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqpsrt c***refer to dqage,dqagie,dqagpe,dqawse c***routines called (none) c***revision date 810101 (yymmdd) c***keywords sequential sorting c***author piessens,robert,appl. math.
      void driver()
      DOCUMENT ME!
      double getAbserr()
      DOCUMENT ME!
      int getErrorStatus()
      DOCUMENT ME!
      double getIntegral()
      DOCUMENT ME!
      int getNeval()
      DOCUMENT ME!
      abstract double intFunc​(double x)
      DOCUMENT ME!
      private double intFuncTest​(double x)  
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Field Detail

      • DQAGPE

        protected static final int DQAGPE
        Integral over (lower, upper) with user specified break points.
        See Also:
        Constant Field Values
      • DQAGIE

        protected static final int DQAGIE
        Integral over (bound, +infinity), (-infinity, bound), or (-infinity, +infinity).
        See Also:
        Constant Field Values
      • DQAGSE

        protected static final int DQAGSE
        Integral over (lower, upper) which can handle end point singularities.
        See Also:
        Constant Field Values
      • DQAGE

        protected static final int DQAGE
        Integral without singularities, discontinuities, or infinite bounds.
        See Also:
        Constant Field Values
      • DQAWOE

        protected static final int DQAWOE
        Automatic integrator, integrand with oscillatory cosine or sine factor
        See Also:
        Constant Field Values
      • DQAWSE

        protected static final int DQAWSE
        Adaptive integrator for integrands with algebraic or logarithmic singularities at endpoints.
        See Also:
        Constant Field Values
      • DQAWFE

        protected static final int DQAWFE
        Automatic integrator, special-purpose, fourier integrals
        See Also:
        Constant Field Values
      • abserr

        private final double[] abserr
        Estimate of the absolute value of the error, which should equal or exceed abs(actual integral - result).
      • alfa

        private double alfa
        parameter in the weight function, alfa.gt.(-1) if alfa.le.(-1), the routine will end with ier[0] = 6.
      • alist

        private double[] alist
        The left end points of the subintervals in the partition of the given integration range (lower, upper).
      • beta

        private double beta
        parameter in the weight function, beta.gt.(-1) if beta.le.(-1), the routine will end with ier[0] = 6.
      • blist

        private double[] blist
        The right end points of the subintervals in the partition of the given integration range (lower, upper).
      • bound

        private double bound
        finite bound of integration range used in dqagie (has no meaning if interval is doubly-infinite).
      • breakPoints

        private double[] breakPoints
        Used in dqagpe This array must always be >= 2 in length. The first breakPoints.length - 2 points are user provided break points. If these points are not in an ascending sequence, they will automatically be sorted.
      • c

        private double c
        Parameter in the weight function, c != lower, c != upper. If c == a or c == b, the routine will end with errorStatus = 6
      • chebmo

        private double[][] chebmo
        array of dimension (maxp1,25) containing the chebyshev moments
      • elist

        private double[] elist
        Estimates of the absolute errors on the subintervals.
      • epmach

        private double epmach
        epmach = D1MACH(4) Machine epmach is the smallest positive epmach such that (1.0 + epmach) != 1.0. epmach = 2**(1 - doubleDigits) = 2**(1 - 53) = 2**(-52) epmach = 2.224460e-16 epmach is called the largest relative spacing
      • epsabs

        private double epsabs
        If epsabs <= 0.0 and epsrel < Math.max(50*relative machine accuracy, 5.0E-29), the routine will exit with an error message.
      • epsrel

        private double epsrel
        DOCUMENT ME!
      • erlst

        private double[] erlst
        In dqawfe vector of dimension at least limlst erlst[k] contains the error estimate corresponding wiht rstlst[k].
      • gamma

        private double gamma
      • icall

        private int icall
        if dqawoe is to be used only once, icall must be set to 1. assume that during this call, the c chebyshev moments (for clenshaw-curtis integration c of degree 24) have been computed for intervals of c lenghts (abs(b-a))*2**(-l), l=0,1,2,...momcom-1. c if icall.gt.1 this means that dqawoe has been c called twice or more on intervals of the same c length abs(b-a). the chebyshev moments already c computed are then re-used in subsequent calls. c if icall.lt.1, the routine will end with ier[0] = 6.
      • ier

        private final int[] ier
        ier[0] = 0 for normal and reliable termination of the routine. It is assumed that the requested accuracy has been achieved. ier[0] > 0 for abnormal termination of the routine. The estimates for the integral and error are less reliable. It is assumed that the requested accuracy has not been achieved. ier[0] = 1 maximum number of subdivisions allowed has been achieved. One can allow more subdivisions by increasing the value of limit (and taking the according dimension adjustments into account). However, if this yields no improvement, it is advised to analyze the integrand in order to determine the integration difficulties. If the position of a local difficulty can be determined( i.e. singularity, discontinuity within the interval), it should be supplied to the routine as an element of the breakPoints array. If necessary, an appropriate special purpose integrator must be used, which is designed for handling the type of difficulty involved. ier[0] = 2 The occurrence of roundoff error is detected, which prevents the requested tolerance from being achieved. The error may be under-estimated. ier[0] = 3 Extremely bad integrand behavior occurs at some points of the integration interval. ier[0] = 4 The algorithm does not converge. Roundoff error is detected in the extrapolation table. It is presumed that the requested tolerance cannot be achieved, and that the returned result is the best that can be obtained. ier[0] = 5 The integral is probably divergent, or slowly convergent. It must be noted that divergence can occur with any other value of ier[0] > 0. ier[0] = 6 The input is invalid because (epsabs <= 0 and epsrel < max(50.0 * relative machine accuracy, 5.0E-29) or in the case of dqagpe can also happen because npts2 < 2, the breakPoints are specified outside the integration range, or , or limit <= npts.
      • ierlst

        private int[] ierlst
        In dqawfe vector of dimension at least limlst ierlst[k] contains the error flag corresponding with rstlst[k]. For the meaning of the local error flags see description of the output parameter ier.
      • inf

        private int inf
        In dqagie indicates the kind of integration range involved inf = 1 corresponds to (bound, +infinity) inf = -1 corresponds to (-infinity, bound) inf = 2 corresponds to (-infinity, +infinity).
      • integr

        private int integr
        With dqawoe: indicates which of the weight functions is to be used integr = 1 w(x) = cos(omega*x) integr = 2 w(x) = sin(omega*x) if integr.ne.1 and integr.ne.2, the routine will end with ier[0] = 6. With dqawse: indicates which weight function is to be used = 1 (x-lower)**alfa*(upper-x)**beta = 2 (x-lower)**alfa*(upper-x)**beta*log(x-lower) = 3 (x-lower)**alfa*(upper-x)**beta*log(upper-x) = 4 (x-lower)**alfa*(upper-x)**beta*log(x-lower)*log(upper-x) if integr.lt.1 or integr.gt.4, the routine will end with ier[0] = 6.
      • iord

        private int[] iord
        The first k elements of iord are pointers to the error estimates over the subintervals, such that elist[iord[0]], ..., elist[iord[k-1]] form a decreasing sequence, with k = last if last <= (limit/2 + 2) , and k = limit + 1 - last otheriwse.
      • key

        private int key
        In dqage key selects the local integration rule A gauss-kronrod pair is used with 7 - 15 points if key < 2 10 - 21 points if key = 2 15 - 31 points if key = 3 20 - 41 points if key = 4 25 - 51 points if key = 5 30 - 61 points if key > 5.
      • last

        private int last
        The number of subintervals actually called in the subdivision process.
      • level

        private int[] level
        level contains the subdivision levels of the subinterval, i.e., if (aa, bb) is a subinterval of (p1, p2) where p1 as well as p2 is a user-provided break point or integration limit, then (aa, bb) has level 1 if abs(bb - aa) = abs(p2 - p1) * 2**(-1).
      • limit

        private int limit
        Gives an upper bound on the number of subintervals in the partition of lower, upper. In dqagpe limit must be >= npts2. If limit < npts2 in dqagpe, the routine exits with an error message. In dqawse limit must be >= 2. If limit < 2 in dqawse, the routine exits with ier[0] = 6.
      • limlst

        private int limlst
        In dqawfe limlst gives an upper bound on the number of cycles, limlst >= 1. If limlst < 3, the routine will end with ier[0] = 6.
      • lower

        private double lower
        DOCUMENT ME!
      • lst

        private int lst
        In dqawfe number of subintervals needed for the integration. If omega = 0 then lst is set to 1.
      • maxp1

        private int maxp1
        gives an upper bound on the number of chebyshev c moments which can be stored, i.e. for the c intervals of lenghts abs(b-a)*2**(-l), c l=0,1, ..., maxp1-2, maxp1.ge.1. c if maxp1.lt.1, the routine will end with ier[0] = 6.
      • momcom

        private int momcom
        indicating that the chebyshev moments c have been computed for intervals of lengths c (abs(b-a))*2**(-l), l=0,1,2, ..., momcom-1, c momcom.lt.maxp1
      • ndin

        private int[] ndin
        After the first integration over the intervals (pts[i], pts[i+1]), i = 0, 1, ..., npts2 - 2, the error estimates over some of the intervals may have been increased artificially, in order to put their subdivision forward. If this happens for the subinterval numbered k, ndin[k] is put to 1, otherwise ndin[k] = 0.
      • neval

        private final int[] neval
        Number of integrand evaluations.
      • nnlog

        private int[] nnlog
        vector of dimension at least limit, containing the c subdivision levels of the subintervals, i.e. c iwork(i) = l means that the subinterval c numbered i is of length abs(b-a)*2**(1-l)
      • npts

        private int npts
        npts = npts2 - 2.
      • npts2

        private int npts2
        npts2 = breakPoints.length.
      • oflow

        private final double oflow
        D1MACH(2) = 2**(emax)*(1 - 2**(-doubleDigits)) = 2**1024*(1 - 2**-53) D1MACH(2) = Double.MAX_VALUE.
        See Also:
        Constant Field Values
      • omega

        private double omega
        parameter in the integrand weight function
      • pts

        private double[] pts
        Integration limits and the break points of the interval in ascending sequence.
      • resabs

        private final double[] resabs
      • resasc

        private final double[] resasc
      • result

        private final double[] result
        Approximation to the integral.
      • rlist

        private double[] rlist
        The integral approximations of the subintervals.
      • routine

        private int routine
        DOCUMENT ME!
      • rslst

        private double[] rslst
        In dqawfe vector of dimension at least limlst. rslst[k-1] contains the integral contribution over the interval (a+(k-1)c, a+kc), where c = (2*int(abs(omega))+1)*pi/abs(omega), k = 1, 2, ..., lst. Note that if omega = 0, rslst[0] contains the value of the integral over (a, infinity).
      • uflow

        private final double uflow
        DOCUMENT ME!
      • upper

        private double upper
        DOCUMENT ME!
      • selfTest

        private boolean selfTest
      • testCase

        private int testCase
      • actualAnswer

        private double actualAnswer
    • Constructor Detail

      • Integration2

        public Integration2()
        Constructor for running self tests.
      • Integration2

        public Integration2​(double lower,
                            double upper,
                            int routine,
                            double epsabs,
                            double epsrel)
        Constructor for Integration Used with routine = DQNG.
        Parameters:
        lower - DOCUMENT ME!
        upper - DOCUMENT ME!
        routine - DOCUMENT ME!
        epsabs - DOCUMENT ME!
        epsrel - DOCUMENT ME!
      • Integration2

        public Integration2​(double bound,
                            int routine,
                            int inf,
                            double epsabs,
                            double epsrel,
                            int limit)
        Constructor used with routine = DQAGIE.
        Parameters:
        bound - double
        routine - int
        inf - int
        epsabs - double
        epsrel - double
        limit - int
      • Integration2

        public Integration2​(double lower,
                            double upper,
                            int routine,
                            double epsabs,
                            double epsrel,
                            int limit)
        Constructor for Integration Used with routine = DQAGSE.
        Parameters:
        lower - DOCUMENT ME!
        upper - DOCUMENT ME!
        routine - DOCUMENT ME!
        epsabs - DOCUMENT ME!
        epsrel - DOCUMENT ME!
        limit - DOCUMENT ME!
      • Integration2

        public Integration2​(double lower,
                            double upper,
                            double c,
                            int routine,
                            double epsabs,
                            double epsrel,
                            int limit)
        Constructor for Integration2 Used with routine = DQAWCE.
        Parameters:
        lower - DOCUMENT ME!
        upper - DOCUMENT ME!
        c -
        routine - DOCUMENT ME!
        epsabs - DOCUMENT ME!
        epsrel - DOCUMENT ME!
        limit - DOCUMENT ME!
      • Integration2

        public Integration2​(double lower,
                            int routine,
                            double omega,
                            int integr,
                            double epsabs,
                            int limlst,
                            int limit,
                            int maxp1)
        Constructor must be used with routine dqawfe
        Parameters:
        lower -
        routine -
        omega -
        integr -
        epsabs -
        limlst -
        limit -
        maxp1 -
      • Integration2

        public Integration2​(double lower,
                            double upper,
                            int routine,
                            double omega,
                            int integr,
                            double epsabs,
                            double epsrel,
                            int limit,
                            int icall,
                            int maxp1)
        Constructor must be used with routine dqawoe
        Parameters:
        lower -
        upper -
        routine -
        omega -
        integr -
        epsabs -
        epsrel -
        limit -
        icall -
        maxp1 -
      • Integration2

        public Integration2​(double lower,
                            double upper,
                            int routine,
                            double alfa,
                            double beta,
                            int integr,
                            double epsabs,
                            double epsrel,
                            int limit)
        This constructor must be used with routine DQAWSE.
        Parameters:
        lower -
        upper -
        routine -
        alfa -
        beta -
        integr -
        epsabs -
        epsrel -
        limit -
      • Integration2

        public Integration2​(double lower,
                            double upper,
                            int routine,
                            double[] breakPoints,
                            double epsabs,
                            double epsrel,
                            int limit)
        Constructor for Integration Used with routine = DQAGPE.
        Parameters:
        lower - DOCUMENT ME!
        upper - DOCUMENT ME!
        routine - DOCUMENT ME!
        breakPoints - DOCUMENT ME!
        epsabs - DOCUMENT ME!
        epsrel - DOCUMENT ME!
        limit - DOCUMENT ME!
      • Integration2

        public Integration2​(double lower,
                            double upper,
                            int routine,
                            int key,
                            double epsabs,
                            double epsrel,
                            int limit)
        Constructor for Integration Used with routine = DQAGE.
        Parameters:
        lower - DOCUMENT ME!
        upper - DOCUMENT ME!
        routine - DOCUMENT ME!
        key - DOCUMENT ME!
        epsabs - DOCUMENT ME!
        epsrel - DOCUMENT ME!
        limit - DOCUMENT ME!
    • Method Detail

      • intFunc

        public abstract double intFunc​(double x)
        DOCUMENT ME!
        Parameters:
        x - DOCUMENT ME!
        Returns:
        DOCUMENT ME!
      • intFuncTest

        private double intFuncTest​(double x)
      • dgtsl

        private void dgtsl​(int n,
                           double[] c,
                           double[] d,
                           double[] e,
                           double[] b,
                           int[] info)
        This is a port of the FORTRAN routine whose header is given below: c c dgtsl given a general tridiagonal matrix and a right hand c side will find the solution. c c on entry c c n integer c is the order of the tridiagonal matrix. c c c double precision(n) c is the subdiagonal of the tridiagonal matrix. c c(2) through c(n) should contain the subdiagonal. c on output c is destroyed. c c d double precision(n) c is the diagonal of the tridiagonal matrix. c on output d is destroyed. c c e double precision(n) c is the superdiagonal of the tridiagonal matrix. c e(1) through e(n-1) should contain the superdiagonal. c on output e is destroyed. c c b double precision(n) c is the right hand side vector. c c on return c c b is the solution vector. c c info integer c = 0 normal value. c = k if the k-th element of the diagonal becomes c exactly zero. the subroutine returns when c this is detected. c c linpack. this version dated 08/14/78 . c jack dongarra, argonne national laboratory.
        Parameters:
        n -
        c -
        d -
        e -
        b -
      • dqagie

        public void dqagie​(double bound,
                           int inf,
                           double epsrel)
        This is a port of the orginal FORTRAN code whose header is given below: c***begin prologue dqagie c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a1,h2a4a1 c***keywords automatic integrator, infinite intervals, c general-purpose, transformation, extrapolation, c globally adaptive c***author piessens,robert,appl. math & progr. div - k.u.leuven c de doncker,elise,appl. math & progr. div - k.u.leuven c***purpose the routine calculates an approximation result to a given c integral i = integral of f over (bound,+infinity) c or i = integral of f over (-infinity,bound) c or i = integral of f over (-infinity,+infinity), c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)) c***description c c integration over infinite intervals c standard fortran subroutine
      • dqagpe

        public void dqagpe()
        dqagpe. This is a port of the original FORTRAN code whose header is given below: c***begin prologue dqagie c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a1,h2a4a1 c***keywords automatic integrator, infinite intervals, c general-purpose, transformation, extrapolation, c globally adaptive c***author piessens,robert,appl. math & progr. div - k.u.leuven c de doncker,elise,appl. math & progr. div - k.u.leuven c***purpose the routine calculates an approximation result to a given c integral i = integral of f over (bound,+infinity) c or i = integral of f over (-infinity,bound) c or i = integral of f over (-infinity,+infinity), c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)) c***description c c integration over infinite intervals c standard fortran subroutine
      • driver

        public void driver()
        DOCUMENT ME!
      • getAbserr

        public double getAbserr()
        DOCUMENT ME!
        Returns:
        abserr
      • getErrorStatus

        public int getErrorStatus()
        DOCUMENT ME!
        Returns:
        ier[0]
      • getIntegral

        public double getIntegral()
        DOCUMENT ME!
        Returns:
        result
      • getNeval

        public int getNeval()
        DOCUMENT ME!
        Returns:
        neval
      • dqage

        private void dqage()
        This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqage c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a1 c***keywords automatic integrator, general-purpose, c integrand examinator, globally adaptive, c gauss-kronrod c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral i = integral of f over (a,b), c hopefully satisfying following claim for accuracy c abs(i-reslt).le.max(epsabs,epsrel*abs(i)). c***description c c computation of a definite integral c standard fortran subroutine c double precision version Calculates an integral over (lower, upper), hopefully satisfying the abs(actual integral - result) <= max(epsabs, epsresl * abs(actual integral)).
      • dqagse

        private void dqagse()
        This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqagse c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a1 c***keywords automatic integrator, general-purpose, c (end point) singularities, extrapolation, c globally adaptive c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral i = integral of f over (a,b), c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)). c***description c c computation of a definite integral c standard fortran subroutine c double precision version This routine calculates the integral of intFunc over (lower, upper) and can handle end-point singularities at lower and upper. It tries to satisfy the claim for accuracy abs(actual integral - result) <= max(epsabs, esprel * abs(actual integral))
      • dqawce

        private void dqawce()
        This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqawce c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1,j4 c***keywords automatic integrator, special-purpose, c cauchy principal value, clenshaw-curtis method c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c*** purpose the routine calculates an approximation result to a c cauchy principal value i = integral of f*w over (a,b) c (w(x) = 1/(x-c), (c.ne.a, c.ne.b), hopefully satisfying c following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)) c***description c c computation of a cauchy principal value c standard fortran subroutine c double precision version
      • dqawfe

        private void dqawfe()
        This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqawfe c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a1 c***keywords automatic integrator, special-purpose, c fourier integrals, c integration between zeros with dqawoe, c convergence acceleration with dqelg c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c dedoncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a c given fourier integal c i = integral of f(x)*w(x) over (a,infinity) c where w(x)=cos(omega*x) or w(x)=sin(omega*x), c hopefully satisfying following claim for accuracy c abs(i-result).le.epsabs. c***description c c computation of fourier integrals c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x). the actual name for f needs to c be declared e x t e r n a l in the driver program. c c a - double precision c lower limit of integration c c omega - double precision c parameter in the weight function c c integr - integer c indicates which weight function is used c integr = 1 w(x) = cos(omega*x) c integr = 2 w(x) = sin(omega*x) c if integr.ne.1.and.integr.ne.2, the routine will c end with ier = 6. c c epsabs - double precision c absolute accuracy requested, epsabs.gt.0 c if epsabs.le.0, the routine will end with ier = 6. c c limlst - integer c limlst gives an upper bound on the number of c cycles, limlst.ge.1. c if limlst.lt.3, the routine will end with ier = 6. c c limit - integer c gives an upper bound on the number of subintervals c allowed in the partition of each cycle, limit.ge.1 c each cycle, limit.ge.1. c c maxp1 - integer c gives an upper bound on the number of c chebyshev moments which can be stored, i.e. c for the intervals of lengths abs(b-a)*2**(-l), c l=0,1, ..., maxp1-2, maxp1.ge.1 c c on return c result - double precision c approximation to the integral x c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - ier = 0 normal and reliable termination of c the routine. it is assumed that the c requested accuracy has been achieved. c ier.gt.0 abnormal termination of the routine. the c estimates for integral and error are less c reliable. it is assumed that the requested c accuracy has not been achieved. c error messages c if omega.ne.0 c ier = 1 maximum number of cycles allowed c has been achieved., i.e. of subintervals c (a+(k-1)c,a+kc) where c c = (2*int(abs(omega))+1)*pi/abs(omega), c for k = 1, 2, ..., lst. c one can allow more cycles by increasing c the value of limlst (and taking the c according dimension adjustments into c account). c examine the array iwork which contains c the error flags on the cycles, in order to c look for eventual local integration c difficulties. if the position of a local c difficulty can be determined (e.g. c singularity, discontinuity within the c interval) one will probably gain from c splitting up the interval at this point c and calling appropriate integrators on c the subranges. c = 4 the extrapolation table constructed for c convergence acceleration of the series c formed by the integral contributions over c the cycles, does not converge to within c the requested accuracy. as in the case of c ier = 1, it is advised to examine the c array iwork which contains the error c flags on the cycles. c = 6 the input is invalid because c (integr.ne.1 and integr.ne.2) or c epsabs.le.0 or limlst.lt.3. c result, abserr, neval, lst are set c to zero. c = 7 bad integrand behaviour occurs within one c or more of the cycles. location and type c of the difficulty involved can be c determined from the vector ierlst. here c lst is the number of cycles actually c needed (see below). c ierlst(k) = 1 the maximum number of c subdivisions (= limit) has c been achieved on the k th c cycle. c = 2 occurrence of roundoff error c is detected and prevents the c tolerance imposed on the c k th cycle, from being c achieved. c = 3 extremely bad integrand c behaviour occurs at some c points of the k th cycle. c = 4 the integration procedure c over the k th cycle does c not converge (to within the c required accuracy) due to c roundoff in the c extrapolation procedure c invoked on this cycle. it c is assumed that the result c on this interval is the c best which can be obtained. c = 5 the integral over the k th c cycle is probably divergent c or slowly convergent. it c must be noted that c divergence can occur with c any other value of c ierlst(k). c if omega = 0 and integr = 1, c the integral is calculated by means of dqagie c and ier = ierlst(1) (with meaning as described c for ierlst(k), k = 1). c c rslst - double precision c vector of dimension at least limlst c rslst(k) contains the integral contribution c over the interval (a+(k-1)c,a+kc) where c c = (2*int(abs(omega))+1)*pi/abs(omega), c k = 1, 2, ..., lst. c note that, if omega = 0, rslst(1) contains c the value of the integral over (a,infinity). c c erlst - double precision c vector of dimension at least limlst c erlst(k) contains the error estimate corresponding c with rslst(k). c c ierlst - integer c vector of dimension at least limlst c ierlst(k) contains the error flag corresponding c with rslst(k). for the meaning of the local error c flags see description of output parameter ier. c c lst - integer c number of subintervals needed for the integration c if omega = 0 then lst is set to 1. c c alist, blist, rlist, elist - double precision c vector of dimension at least limit, c c iord, nnlog - integer c vector of dimension at least limit, providing c space for the quantities needed in the subdivision c process of each cycle c c chebmo - double precision c array of dimension at least (maxp1,25), providing c space for the chebyshev moments needed within the c cycles c c***references (none) c***routines called d1mach,dqagie,dqawoe,dqelg c***end prologue dqawfe c
      • dqawoe

        private void dqawoe​(double a,
                            double b,
                            double epsabs,
                            double epsrel,
                            int icall,
                            double[] result,
                            double[] abserr,
                            int[] neval,
                            int[] ier)
        This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqawoe c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1 c***keywords automatic integrator, special-purpose, c integrand with oscillatory cos or sin factor, c clenshaw-curtis method, (end point) singularities, c extrapolation, globally adaptive c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral c i = integral of f(x)*w(x) over (a,b) c where w(x) = cos(omega*x) or w(x)=sin(omega*x), c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)). c***description c c computation of oscillatory integrals c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x). the actual name for f needs to be c declared e x t e r n a l in the driver program. c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration c c omega - double precision c parameter in the integrand weight function c c integr - integer c indicates which of the weight functions is to be c used c integr = 1 w(x) = cos(omega*x) c integr = 2 w(x) = sin(omega*x) c if integr.ne.1 and integr.ne.2, the routine c will end with ier = 6. c c epsabs - double precision c absolute accuracy requested c epsrel - double precision c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c limit - integer c gives an upper bound on the number of subdivisions c in the partition of (a,b), limit.ge.1. c c icall - integer c if dqawoe is to be used only once, icall must c be set to 1. assume that during this call, the c chebyshev moments (for clenshaw-curtis integration c of degree 24) have been computed for intervals of c lenghts (abs(b-a))*2**(-l), l=0,1,2,...momcom-1. c if icall.gt.1 this means that dqawoe has been c called twice or more on intervals of the same c length abs(b-a). the chebyshev moments already c computed are then re-used in subsequent calls. c if icall.lt.1, the routine will end with ier = 6. c c maxp1 - integer c gives an upper bound on the number of chebyshev c moments which can be stored, i.e. for the c intervals of lenghts abs(b-a)*2**(-l), c l=0,1, ..., maxp1-2, maxp1.ge.1. c if maxp1.lt.1, the routine will end with ier = 6. c c on return c result - double precision c approximation to the integral c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the c requested accuracy has been achieved. c - ier.gt.0 abnormal termination of the routine. c the estimates for integral and error are c less reliable. it is assumed that the c requested accuracy has not been achieved. c error messages c ier = 1 maximum number of subdivisions allowed c has been achieved. one can allow more c subdivisions by increasing the value of c limit (and taking according dimension c adjustments into account). however, if c this yields no improvement it is advised c to analyze the integrand, in order to c determine the integration difficulties. c if the position of a local difficulty can c be determined (e.g. singularity, c discontinuity within the interval) one c will probably gain from splitting up the c interval at this point and calling the c integrator on the subranges. if possible, c an appropriate special-purpose integrator c should be used which is designed for c handling the type of difficulty involved. c = 2 the occurrence of roundoff error is c detected, which prevents the requested c tolerance from being achieved. c the error may be under-estimated. c = 3 extremely bad integrand behaviour occurs c at some points of the integration c interval. c = 4 the algorithm does not converge. c roundoff error is detected in the c extrapolation table. c it is presumed that the requested c tolerance cannot be achieved due to c roundoff in the extrapolation table, c and that the returned result is the c best which can be obtained. c = 5 the integral is probably divergent, or c slowly convergent. it must be noted that c divergence can occur with any other value c of ier.gt.0. c = 6 the input is invalid, because c (epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) c or (integr.ne.1 and integr.ne.2) or c icall.lt.1 or maxp1.lt.1. c result, abserr, neval, last, rlist(1), c elist(1), iord(1) and nnlog(1) are set c to zero. alist(1) and blist(1) are set c to a and b respectively. c c last - integer c on return, last equals the number of c subintervals produces in the subdivision c process, which determines the number of c significant elements actually in the c work arrays. c alist - double precision c vector of dimension at least limit, the first c last elements of which are the left c end points of the subintervals in the partition c of the given integration range (a,b) c c blist - double precision c vector of dimension at least limit, the first c last elements of which are the right c end points of the subintervals in the partition c of the given integration range (a,b) c c rlist - double precision c vector of dimension at least limit, the first c last elements of which are the integral c approximations on the subintervals c c elist - double precision c vector of dimension at least limit, the first c last elements of which are the moduli of the c absolute error estimates on the subintervals c c iord - integer c vector of dimension at least limit, the first k c elements of which are pointers to the error c estimates over the subintervals, c such that elist(iord(1)), ..., c elist(iord(k)) form a decreasing sequence, with c k = last if last.le.(limit/2+2), and c k = limit+1-last otherwise. c c nnlog - integer c vector of dimension at least limit, containing the c subdivision levels of the subintervals, i.e. c iwork(i) = l means that the subinterval c numbered i is of length abs(b-a)*2**(1-l) c c on entry and return c momcom - integer c indicating that the chebyshev moments c have been computed for intervals of lengths c (abs(b-a))*2**(-l), l=0,1,2, ..., momcom-1, c momcom.lt.maxp1 c c chebmo - double precision c array of dimension (maxp1,25) containing the c chebyshev moments c c***references (none) c***routines called d1mach,dqc25f,dqelg,dqpsrt c***end prologue dqawoe c
      • dqawse

        private void dqawse()
        This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqawse c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1 c***keywords automatic integrator, special-purpose, c algebraico-logarithmic end point singularities, c clenshaw-curtis method c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral i = integral of f*w over (a,b), c (where w shows a singular behaviour at the end points, c see parameter integr). c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)). c***description c c integration of functions having algebraico-logarithmic c end point singularities c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x). the actual name for f needs to be c declared e x t e r n a l in the driver program. c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration, b.gt.a c if b.le.a, the routine will end with ier = 6. c c alfa - double precision c parameter in the weight function, alfa.gt.(-1) c if alfa.le.(-1), the routine will end with c ier = 6. c c beta - double precision c parameter in the weight function, beta.gt.(-1) c if beta.le.(-1), the routine will end with c ier = 6. c c integr - integer c indicates which weight function is to be used c = 1 (x-a)**alfa*(b-x)**beta c = 2 (x-a)**alfa*(b-x)**beta*log(x-a) c = 3 (x-a)**alfa*(b-x)**beta*log(b-x) c = 4 (x-a)**alfa*(b-x)**beta*log(x-a)*log(b-x) c if integr.lt.1 or integr.gt.4, the routine c will end with ier = 6. c c epsabs - double precision c absolute accuracy requested c epsrel - double precision c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c limit - integer c gives an upper bound on the number of subintervals c in the partition of (a,b), limit.ge.2 c if limit.lt.2, the routine will end with ier = 6. c c on return c result - double precision c approximation to the integral c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the requested c accuracy has been achieved. c ier.gt.0 abnormal termination of the routine c the estimates for the integral and error c are less reliable. it is assumed that the c requested accuracy has not been achieved. c error messages c = 1 maximum number of subdivisions allowed c has been achieved. one can allow more c subdivisions by increasing the value of c limit. however, if this yields no c improvement, it is advised to analyze the c integrand in order to determine the c integration difficulties which prevent the c requested tolerance from being achieved. c in case of a jump discontinuity or a local c singularity of algebraico-logarithmic type c at one or more interior points of the c integration range, one should proceed by c splitting up the interval at these c points and calling the integrator on the c subranges. c = 2 the occurrence of roundoff error is c detected, which prevents the requested c tolerance from being achieved. c = 3 extremely bad integrand behaviour occurs c at some points of the integration c interval. c = 6 the input is invalid, because c b.le.a or alfa.le.(-1) or beta.le.(-1), or c integr.lt.1 or integr.gt.4, or c (epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c or limit.lt.2. c result, abserr, neval, rlist(1), elist(1), c iord(1) and last are set to zero. alist(1) c and blist(1) are set to a and b c respectively. c c alist - double precision c vector of dimension at least limit, the first c last elements of which are the left c end points of the subintervals in the partition c of the given integration range (a,b) c c blist - double precision c vector of dimension at least limit, the first c last elements of which are the right c end points of the subintervals in the partition c of the given integration range (a,b) c c rlist - double precision c vector of dimension at least limit,the first c last elements of which are the integral c approximations on the subintervals c c elist - double precision c vector of dimension at least limit, the first c last elements of which are the moduli of the c absolute error estimates on the subintervals c c iord - integer c vector of dimension at least limit, the first k c of which are pointers to the error c estimates over the subintervals, so that c elist(iord(1)), ..., elist(iord(k)) with k = last c if last.le.(limit/2+2), and k = limit+1-last c otherwise form a decreasing sequence c c last - integer c number of subintervals actually produced in c the subdivision process c c***references (none) c***routines called d1mach,dqc25s,dqmomo,dqpsrt c***end prologue dqawse c
      • dqc25c

        private void dqc25c​(double a,
                            double b,
                            double c,
                            double[] result,
                            double[] abserr,
                            int[] krul,
                            int[] neval)
        This is the port of the original FORTRAN routine whose header is given below: c***begin prologue dqc25c c***date written 810101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a2,j4 c***keywords 25-point clenshaw-curtis integration c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute i = integral of f*w over (a,b) with c error estimate, where w(x) = 1/(x-c) c***description c c integration rules for the computation of cauchy c principal value integrals c standard fortran subroutine c double precision version c c c a - double precision c left end point of the integration interval c c b - double precision c right end point of the integration interval, b.gt.a c c c - double precision c parameter in the weight function c c result - double precision c approximation to the integral c result is computed by using a generalized c clenshaw-curtis method if c lies within ten percent c of the integration interval. in the other case the c 15-point kronrod rule obtained by optimal addition c of abscissae to the 7-point gauss rule, is applied. c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c krul - integer c key which is decreased by 1 if the 15-point c gauss-kronrod scheme has been used c c neval - integer c number of integrand evaluations c c....................................................................... c***references (none) c***routines called dqcheb,dqk15w,dqwgtc c***end prologue dqc25c c
        Parameters:
        a -
        b -
        c -
        result -
        abserr -
        krul -
        neval -
      • dqc25f

        private void dqc25f​(double a,
                            double b,
                            double omega,
                            int nrmom,
                            int ksave,
                            double[] result,
                            double[] abserr,
                            int[] neval,
                            double[] resabs,
                            double[] resasc)
        This is a port of the original FORTRAN whose header is given below: c***begin prologue dqc25f c***date written 810101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a2 c***keywords integration rules for functions with cos or sin c factor, clenshaw-curtis, gauss-kronrod c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute the integral i=integral of f(x) over (a,b) c where w(x) = cos(omega*x) or w(x)=sin(omega*x) and to c compute j = integral of abs(f) over (a,b). for small value c of omega or small intervals (a,b) the 15-point gauss-kronro c rule is used. otherwise a generalized clenshaw-curtis c method is used. c***description c c integration rules for functions with cos or sin factor c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x). the actual name for f needs to c be declared e x t e r n a l in the calling program. c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration c c omega - double precision c parameter in the weight function c c integr - integer c indicates which weight function is to be used c integr = 1 w(x) = cos(omega*x) c integr = 2 w(x) = sin(omega*x) c c nrmom - integer c the length of interval (a,b) is equal to the length c of the original integration interval divided by c 2**nrmom (we suppose that the routine is used in an c adaptive integration process, otherwise set c nrmom = 0). nrmom must be zero at the first call. c c maxp1 - integer c gives an upper bound on the number of chebyshev c moments which can be stored, i.e. for the c intervals of lengths abs(bb-aa)*2**(-l), c l = 0,1,2, ..., maxp1-2. c c ksave - integer c key which is one when the moments for the c current interval have been computed c c on return c result - double precision c approximation to the integral i c c abserr - double precision c estimate of the modulus of the absolute c error, which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c resabs - double precision c approximation to the integral j c c resasc - double precision c approximation to the integral of abs(f-i/(b-a)) c c on entry and return c momcom - integer c for each interval length we need to compute the c chebyshev moments. momcom counts the number of c intervals for which these moments have already been c computed. if nrmom.lt.momcom or ksave = 1, the c chebyshev moments for the interval (a,b) have c already been computed and stored, otherwise we c compute them and we increase momcom. c c chebmo - double precision c array of dimension at least (maxp1,25) containing c the modified chebyshev moments for the first momcom c momcom interval lengths c c ...................................................................... c***references (none) c***routines called d1mach,dgtsl,dqcheb,dqk15w,dqwgtf c***end prologue dqc25f c
        Parameters:
        a -
        b -
        omega -
        nrmom -
        ksave -
        result -
        abserr -
        neval -
        resabs -
        resasc -
      • dqc25s

        private void dqc25s​(double bl,
                            double br,
                            double[] ri,
                            double[] rj,
                            double[] rg,
                            double[] rh,
                            double[] result,
                            double[] abserr,
                            double[] resasc,
                            int[] nev)
        This is a port of the original FORTRAN whose header is given below: c***begin prologue dqc25s c***date written 810101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a2 c***keywords 25-point clenshaw-curtis integration c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute i = integral of f*w over (bl,br), with error c estimate, where the weight function w has a singular c behaviour of algebraico-logarithmic type at the points c a and/or b. (bl,br) is a part of (a,b). c***description c c integration rules for integrands having algebraico-logarithmic c end point singularities c standard fortran subroutine c double precision version c c parameters c f - double precision c function subprogram defining the integrand c f(x). the actual name for f needs to be declared c e x t e r n a l in the driver program. c c a - double precision c left end point of the original interval c c b - double precision c right end point of the original interval, b.gt.a c c bl - double precision c lower limit of integration, bl.ge.a c c br - double precision c upper limit of integration, br.le.b c c alfa - double precision c parameter in the weight function c c beta - double precision c parameter in the weight function c c ri,rj,rg,rh - double precision c modified chebyshev moments for the application c of the generalized clenshaw-curtis c method (computed in subroutine dqmomo) c c result - double precision c approximation to the integral c result is computed by using a generalized c clenshaw-curtis method if b1 = a or br = b. c in all other cases the 15-point kronrod c rule is applied, obtained by optimal addition of c abscissae to the 7-point gauss rule. c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c resasc - double precision c approximation to the integral of abs(f*w-i/(b-a)) c c integr - integer c which determines the weight function c = 1 w(x) = (x-a)**alfa*(b-x)**beta c = 2 w(x) = (x-a)**alfa*(b-x)**beta*log(x-a) c = 3 w(x) = (x-a)**alfa*(b-x)**beta*log(b-x) c = 4 w(x) = (x-a)**alfa*(b-x)**beta*log(x-a)* c log(b-x) c c nev - integer c number of integrand evaluations c***references (none) c***routines called dqcheb,dqk15w c***end prologue dqc25s c
        Parameters:
        bl -
        br -
        ri -
        rj -
        rg -
        rh -
        result -
        abserr -
        resasc -
        nev -
      • dqcheb

        private void dqcheb​(double[] x,
                            double[] fval,
                            double[] cheb12,
                            double[] cheb24)
        This is a port of the original FORTRAN whose header is given below: c***begin prologue dqcheb c***refer to dqc25c,dqc25f,dqc25s c***routines called (none) c***revision date 830518 (yymmdd) c***keywords chebyshev series expansion, fast fourier transform c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose this routine computes the chebyshev series expansion c of degrees 12 and 24 of a function using a c fast fourier transform method c f(x) = sum(k=1,..,13) (cheb12(k)*t(k-1,x)), c f(x) = sum(k=1,..,25) (cheb24(k)*t(k-1,x)), c where t(k,x) is the chebyshev polynomial of degree k. c***description c c chebyshev series expansion c standard fortran subroutine c double precision version c c parameters c on entry c x - double precision c vector of dimension 11 containing the c values cos(k*pi/24), k = 1, ..., 11 c c fval - double precision c vector of dimension 25 containing the c function values at the points c (b+a+(b-a)*cos(k*pi/24))/2, k = 0, ...,24, c where (a,b) is the approximation interval. c fval(1) and fval(25) are divided by two c (these values are destroyed at output). c c on return c cheb12 - double precision c vector of dimension 13 containing the c chebyshev coefficients for degree 12 c c cheb24 - double precision c vector of dimension 25 containing the c chebyshev coefficients for degree 24 c c***end prologue dqcheb c
        Parameters:
        x -
        fval -
        cheb12 -
        cheb24 -
      • dqelg

        private void dqelg​(int[] n,
                           double[] epstab,
                           double[] result,
                           double[] abserr,
                           double[] res31a,
                           int[] nres)
        This is a port of the original FORTRAN whose header is given below: c***begin prologue dqelg c***refer to dqagie,dqagoe,dqagpe,dqagse c***routines called d1mach c***revision date 830518 (yymmdd) c***keywords epsilon algorithm, convergence acceleration, c extrapolation c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math & progr. div. - k.u.leuven c***purpose the routine determines the limit of a given sequence of c approximations, by means of the epsilon algorithm of c p.wynn. an estimate of the absolute error is also given. c the condensed epsilon table is computed. only those c elements needed for the computation of the next diagonal c are preserved. c***description c c epsilon algorithm c standard fortran subroutine c double precision version This routine determines the limit of a given sequence of approximations, by means of the epsilon algorithm of P. Wynn. An estimate of the absolute error is also given. The condensed epsilon table is computed. Only those elements needed for the computation of the next diagonal are preserved.
        Parameters:
        n - epstab[n[0]-1] contains the new element in the first column of the epsilon table
        epstab - 52 element array containing the elements of the two lower diagonals of the triangular epsilon table. The elements are numbered starting at the right-hand corner of the triangle
        result - resulting approximation to the integral The element in the new diagonal with the least value of error.
        abserr - estimate of the absolute error computed from result and the 3 previous results
        res31a - array containing the last 3 results
        nres - number of calls to the routine (should be zero at first call)
      • dqk15

        private void dqk15​(double a,
                           double b,
                           double[] result,
                           double[] abserr,
                           double[] resabs,
                           double[] resasc)
        The is a port of the original FORTRAN whose header is given below: c***begin prologue dqk15 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 15-point gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div - k.u.leuven c***purpose to compute i = integral of f over (a,b), with error c estimate c j = integral of abs(f) over (a,b) c***description c c integration rules c standard fortran subroutine c double precision version This routine computes theintegral of the intFunc over (a, b) and the integral of the abs(intFunc) over (a, b).
        Parameters:
        a - lower limit for integration
        b - upper limit for integration
        result - Approximation to the integral. The result is computed by applying the 15-point kronrod rule (resk) obtained by optimal addition of abscissae to the 7-point gauss rule (resg).
        abserr - Estimate of the modulus of the absolute error, which should equal or exceed abs(integral of intFunc over (a,b) - result)
        resabs - Approximation to integral of abs(intFunc)
        resasc - Approximation to the integral of abs(intFunc - integral of intFunc/(b - a)) over (a, b)
      • dqk15i

        private void dqk15i​(double boun,
                            int inf,
                            double a,
                            double b,
                            double[] result,
                            double[] abserr,
                            double[] resabs,
                            double[] resasc)
        This is a port of the original FORTRAN whose header is given below: c***begin prologue dqk15i c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a2,h2a4a2 c***keywords 15-point transformed gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the original (infinite integration range is mapped c onto the interval (0,1) and (a,b) is a part of (0,1). c it is the purpose to compute c i = integral of transformed integrand over (a,b), c j = integral of abs(transformed integrand) over (a,b). c***description c c integration rule c standard fortran subroutine c double precision version The original infinite integration range is mapped onto the interval (0, 1) and (a, b) is a part of (0, 1). This routine computes the integral of the transformed integrand over (a, b) and the integral of the abs(transformed integrand) over (a, b).
        Parameters:
        boun - finite bound of original integration range (set to zero if inf = +2)
        inf - If inf = -1, the original interval is (-infinity, bound) If inf = +1, the original interval is (bound, +infinity) If inf = +2, the original interval is (-infinity, +infinity) and the integral is computed as the sum of two integrals, one over (-infinity, 0) and one over (0, +infinity)
        a - lower limit for integration over subrange of (0, 1)
        b - upper limit for integration over subrange of (0, 1)
        result - Approximation to the integral. The result is computed by applying the 15-point kronrod rule (resk) obtained by optimal addition of abscissae to the 7-point gauss rule (resg).
        abserr - Estimate of the modulus of the absolute error, which should equal or exceed abs(integral of transformed integrand - result)
        resabs - Approximation to integral of abs(transformed integrand)
        resasc - Approximation to the integral of abs(transformed integrand - integral of transformed integrand/(b - a)) over (a, b)
      • dqk15w

        private void dqk15w​(double p1,
                            double a,
                            double b,
                            double[] result,
                            double[] abserr,
                            double[] resabs,
                            double[] resasc)
        This a a port of the original FORTRAN whose header is given below: c***begin prologue dqk15w c***date written 810101 (yymmdd) c***revision date 830518 (mmddyy) c***category no. h2a2a2 c***keywords 15-point gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute i = integral of f*w over (a,b), with error c estimate c j = integral of abs(f*w) over (a,b) c***description c c integration rules c standard fortran subroutine c double precision version c c parameters c on entry c c p1, p2, p3, p4 - double precision c parameters in the weight function c c kp - integer c key for indicating the type of weight function c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration c c on return c result - double precision c approximation to the integral i c result is computed by applying the 15-point c kronrod rule (resk) obtained by optimal addition c of abscissae to the 7-point gauss rule (resg). c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c resabs - double precision c approximation to the integral of abs(f) c c resasc - double precision c approximation to the integral of abs(f-i/(b-a)) c
        Parameters:
        p1 -
        kp -
        a -
        b -
        result -
        abserr -
        resabs -
        resasc -
      • dqk21

        private void dqk21​(double a,
                           double b,
                           double[] result,
                           double[] abserr,
                           double[] resabs,
                           double[] resasc)
        This is a port of the original FORTRAN whose header is given below: c***begin prologue dqk21 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 21-point gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute i = integral of f over (a,b), with error c estimate c j = integral of abs(f) over (a,b) c***description c c integration rules c standard fortran subroutine c double precision version Computes integral of function over (a,b), with error estimate and computes integral of abs(function) over (a,b).
        Parameters:
        a - lower limit of integration
        b - upper limit of integration
        result - Approximation to the integral. Result is computed by applying the 21-point kronrod rule (resk) obtained by optimal addition of abscissae to the 10-point gauss rule (resg).
        abserr - Estimate of the modulus of the absolute error, which should not exceed abs(actual integral - result)
        resabs - Approximation to the integral of abs(function) over (a,b).
        resasc - Approximation to the integral of abs(function - actual integral/(b-a)) over (a,b)
      • dqk31

        private void dqk31​(double a,
                           double b,
                           double[] result,
                           double[] abserr,
                           double[] resabs,
                           double[] resasc)
        This is a port of the original FORTRAN whose header is given below: c***begin prologue dqk31 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 31-point gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute i = integral of f over (a,b) with error c estimate c j = integral of abs(f) over (a,b) c***description c c integration rules c standard fortran subroutine c double precision version This routine computes theintegral of the intFunc over (a, b) and the integral of the abs(intFunc) over (a, b).
        Parameters:
        a - lower limit for integration
        b - upper limit for integration
        result - Approximation to the integral. The result is computed by applying the 31-point kronrod rule (resk) obtained by optimal addition of abscissae to the 15-point gauss rule (resg).
        abserr - Estimate of the modulus of the absolute error, which should equal or exceed abs(integral of intFunc over (a,b) - result)
        resabs - Approximation to integral of abs(intFunc)
        resasc - Approximation to the integral of abs(intFunc - integral of intFunc/(b - a)) over (a, b)
      • dqk41

        private void dqk41​(double a,
                           double b,
                           double[] result,
                           double[] abserr,
                           double[] resabs,
                           double[] resasc)
        This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqk41 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 41-point gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute i = integral of f over (a,b), with error c estimate c j = integral of abs(f) over (a,b) c***description c c integration rules c standard fortran subroutine c double precision version This routine computes theintegral of the intFunc over (a, b) and the integral of the abs(intFunc) over (a, b).
        Parameters:
        a - lower limit for integration
        b - upper limit for integration
        result - Approximation to the integral. The result is computed by applying the 41-point kronrod rule (resk) obtained by optimal addition of abscissae to the 20-point gauss rule (resg).
        abserr - Estimate of the modulus of the absolute error, which should equal or exceed abs(integral of intFunc over (a,b) - result)
        resabs - Approximation to integral of abs(intFunc)
        resasc - Approximation to the integral of abs(intFunc - integral of intFunc/(b - a)) over (a, b)
      • dqk51

        private void dqk51​(double a,
                           double b,
                           double[] result,
                           double[] abserr,
                           double[] resabs,
                           double[] resasc)
        This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqk51 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 51-point gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math & progr. div. - k.u.leuven c***purpose to compute i = integral of f over (a,b) with error c estimate c j = integral of abs(f) over (a,b) c***description c c integration rules c standard fortran subroutine c double precision version This routine computes theintegral of the intFunc over (a, b) and the integral of the abs(intFunc) over (a, b).
        Parameters:
        a - lower limit for integration
        b - upper limit for integration
        result - Approximation to the integral. The result is computed by applying the 51-point kronrod rule (resk) obtained by optimal addition of abscissae to the 25-point gauss rule (resg).
        abserr - Estimate of the modulus of the absolute error, which should equal or exceed abs(integral of intFunc over (a,b) - result)
        resabs - Approximation to integral of abs(intFunc)
        resasc - Approximation to the integral of abs(intFunc - integral of intFunc/(b - a)) over (a, b)
      • dqk61

        private void dqk61​(double a,
                           double b,
                           double[] result,
                           double[] abserr,
                           double[] resabs,
                           double[] resasc)
        This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqk61 c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 61-point gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute i = integral of f over (a,b) with error c estimate c j = integral of dabs(f) over (a,b) c***description c c integration rule c standard fortran subroutine c double precision version This routine computes the integral of the intFunc over (a, b) and the integral of the abs(intFunc) over (a, b).
        Parameters:
        a - lower limit for integration
        b - upper limit for integration
        result - Approximation to the integral. The result is computed by applying the 61-point kronrod rule (resk) obtained by optimal addition of abscissae to the 30-point gauss rule (resg).
        abserr - Estimate of the modulus of the absolute error, which should equal or exceed abs(integral of intFunc over (a,b) - result)
        resabs - Approximation to integral of abs(intFunc)
        resasc - Approximation to the integral of abs(intFunc - integral of intFunc/(b - a)) over (a, b)
      • dqmomo

        private void dqmomo​(double[] ri,
                            double[] rj,
                            double[] rg,
                            double[] rh)
        This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqmomo c***date written 820101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1,c3a2 c***keywords modified chebyshev moments c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose this routine computes modified chebsyshev moments. the k-th c modified chebyshev moment is defined as the integral over c (-1,1) of w(x)*t(k,x), where t(k,x) is the chebyshev c polynomial of degree k. c***description c c modified chebyshev moments c standard fortran subroutine c double precision version c c parameters c alfa - double precision c parameter in the weight function w(x), alfa.gt.(-1) c c beta - double precision c parameter in the weight function w(x), beta.gt.(-1) c c ri - double precision c vector of dimension 25 c ri(k) is the integral over (-1,1) of c (1+x)**alfa*t(k-1,x), k = 1, ..., 25. c c rj - double precision c vector of dimension 25 c rj(k) is the integral over (-1,1) of c (1-x)**beta*t(k-1,x), k = 1, ..., 25. c c rg - double precision c vector of dimension 25 c rg(k) is the integral over (-1,1) of c (1+x)**alfa*log((1+x)/2)*t(k-1,x), k = 1, ..., 25. c c rh - double precision c vector of dimension 25 c rh(k) is the integral over (-1,1) of c (1-x)**beta*log((1-x)/2)*t(k-1,x), k = 1, ..., 25. c c integr - integer c input parameter indicating the modified c moments to be computed c integr = 1 compute ri, rj c = 2 compute ri, rj, rg c = 3 compute ri, rj, rh c = 4 compute ri, rj, rg, rh c c***references (none) c***routines called (none) c***end prologue dqmomo c
        Parameters:
        ri -
        rj -
        rg -
        rh -
      • dqng

        private void dqng()
        This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqng c***date written 800101 (yymmdd) c***revision date 810101 (yymmdd) c***category no. h2a1a1 c***keywords automatic integrator, smooth integrand, c non-adaptive, gauss-kronrod(patterson) c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl math & progr. div. - k.u.leuven c kahaner,david,nbs - modified (2/82) c***purpose the routine calculates an approximation result to a c given definite integral i = integral of f over (a,b), c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)). c***description c c non-adaptive integration c standard fortran subroutine c double precision version Calculates an integral over (lower, upper), hopefully satisfying the abs(actual integral - result) <= max(epsabs, epsresl * abs(actual integral)) Result is obtained by applying the 21-point gauss-kronrod rule (res21) obtained by optimal addition of abscissae to the 10-point gauss rule (res10), or by applying the 43-point rule (res43) obtained by optimal addition of abscissae to the 21-point gauss-kronrod rule, or by applying the 87-point rule (res87) obtained by optimal addition of abscissae to the 43-point rule.
      • dqpsrt

        private void dqpsrt​(int limit,
                            int last,
                            int[] maxErr,
                            double[] ermax,
                            double[] elist,
                            int[] iord,
                            int[] nrmax)
        This is a port of the original FORTRAN routine whose header is given below: c***begin prologue dqpsrt c***refer to dqage,dqagie,dqagpe,dqawse c***routines called (none) c***revision date 810101 (yymmdd) c***keywords sequential sorting c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose this routine maintains the descending ordering in the c list of the local error estimated resulting from the c interval subdivision process. at each call two error c estimates are inserted using the sequential search c method, top-down for the largest error estimate and c bottom-up for the smallest error estimate. c***description c c ordering routine c standard fortran subroutine c double precision version This routine maintains the descending ordering in the list of the local error estimated resulting from the interval subdivision process. At each call two error estimates are inserted using the sequential search method, top-down for the largest error estimate and bottom-up for the smallest error estimate.
        Parameters:
        limit - maximum number of error estimates the list can contain
        last - number of error estimates currently in the list
        maxErr - maxErr points to the nrmax-th largest estimate currently in the list
        ermax - nrmax-th largest error estimate ermax[0] = elist[maxErr[0]]
        elist - the error estimates
        iord - Array of size last , the first k elements of which contain pointers to the error estimates, such that elist[iord[0]],...,elist[iord[k-1]] form a decreasing sequence, with k = last if last <= (limit/2 + 2), and k = limit + 1 - last otherwise
        nrmax - maxErr[0] = iord[nrmax[0] - 1]