Package gov.nih.mipav.model.algorithms
Class FitGaussian
- java.lang.Object
-
- gov.nih.mipav.model.algorithms.NLConstrainedEngine
-
- gov.nih.mipav.model.algorithms.NLFittedFunction
-
- gov.nih.mipav.model.algorithms.FitGaussian
-
public class FitGaussian extends NLFittedFunction
FitGaussian -fits an array of points to a normal curve, general from f = a*exp(-(x-b)^2/2sigma^2) Will also perform thresholding techniques to determine useful data points for fitting- Version:
- 0.1
- Author:
- senseneyj
- See Also:
NLConstrainedEngine
-
-
Field Summary
Fields Modifier and Type Field Description private doubleampAmplitude parameterprivate intdataEndLocation in xSeries where Gaussian data endsprivate intdataStartLocation in xSeries where Gaussian data startsprivate intitersprivate doublerSquaredR squaredprivate doublesigmaSigma parameterprivate doublexInitCenter parameter-
Fields inherited from class gov.nih.mipav.model.algorithms.NLFittedFunction
chisq, EPSILON, MAX_ITR, MIN_ITR, xSeries, yDataFitted, ySeries
-
Fields inherited from class gov.nih.mipav.model.algorithms.NLConstrainedEngine
a, absoluteConvergence, analyticalJacobian, bl, bounds, bu, ctrlMat, dyda, gues, internalScaling, jacobian, maxIterations, nPts, outputMes, param, parameterConvergence, relativeConvergence, residuals, secondAllowed, stdv, tolerance
-
-
Constructor Summary
Constructors Constructor Description FitGaussian()FitGaussian - test constructor, builds and test function.FitGaussian(int nPoints, double[] xData, double[] yData)FitGaussian.FitGaussian(int nPoints, float[] xData, float[] yData)Constructs new fit gaussian.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description private double[]applyKernel()Apply small kernel to smooth out data.protected voidcalculateChiSq()Calculates chi squaredprotected voidcalculateFittedY()Calculates yDataFittedprivate doubledgdA(double x)Partial derivative of gaussian with respect to A.private doubledgdsigma(double x)Partial derivative of gaussian with respect to sigma.private doubledgdx(double x)Partial derivative of gaussian with respect to x.voiddisplayResults()Display results of displaying exponential fitting parameters.voiddriver()Starts the analysis.private voidestimateInitial()voidfitToFunction(double[] a, double[] residuals, double[][] covarMat)fitToFunction communicates with 3 protected variables param, nPts, and ctrlMat ctrlMat is used as a wrapper for ctrl or lctrl.private doublegauss(double x)Gaussian evaluated at a point with given parametersprotected Jama.MatrixgenerateJacobian()Jacobian used for non-linear least squares fitting.protected Jama.MatrixgenerateResiduals()Calculates the residuals for a given function, not implemented since some functions might prefer to only use a subset of data points, or not use yDataFitted if working during an iterationdoublegetRSquared()private voidtestData()Test data to test fitting of gaussian.-
Methods inherited from class gov.nih.mipav.model.algorithms.NLFittedFunction
getChisq, getFittedY, getMedian
-
Methods inherited from class gov.nih.mipav.model.algorithms.NLConstrainedEngine
dumpTestResults, fitToTestFunction, getChiSquared, getExitStatus, getIterations, getParameters, getResiduals, statusMessage
-
-
-
-
Field Detail
-
dataStart
private int dataStart
Location in xSeries where Gaussian data starts
-
dataEnd
private int dataEnd
Location in xSeries where Gaussian data ends
-
amp
private double amp
Amplitude parameter
-
xInit
private double xInit
Center parameter
-
sigma
private double sigma
Sigma parameter
-
rSquared
private double rSquared
R squared
-
iters
private int iters
-
-
Constructor Detail
-
FitGaussian
public FitGaussian()
FitGaussian - test constructor, builds and test function.
-
FitGaussian
public FitGaussian(int nPoints, double[] xData, double[] yData)FitGaussian.- Parameters:
nPoints- number of points in the functionxData- DOCUMENT ME!yData- DOCUMENT ME!
-
FitGaussian
public FitGaussian(int nPoints, float[] xData, float[] yData)Constructs new fit gaussian.- Parameters:
nPoints- Number of points in the functionxData- DOCUMENT ME!yData- DOCUMENT ME!
-
-
Method Detail
-
applyKernel
private double[] applyKernel()
Apply small kernel to smooth out data. Often helpful when too many bins have been applied by user.
-
estimateInitial
private void estimateInitial()
-
driver
public void driver()
Starts the analysis. For some reason a guess with the wrong sign for a2 will not converge. Therefore, try both sign and take the one with the lowest chi-squared value.- Overrides:
driverin classNLConstrainedEngine
-
calculateChiSq
protected void calculateChiSq()
Description copied from class:NLFittedFunctionCalculates chi squared- Specified by:
calculateChiSqin classNLFittedFunction
-
calculateFittedY
protected void calculateFittedY()
Description copied from class:NLFittedFunctionCalculates yDataFitted- Specified by:
calculateFittedYin classNLFittedFunction
-
displayResults
public void displayResults()
Display results of displaying exponential fitting parameters.- Specified by:
displayResultsin classNLFittedFunction
-
getRSquared
public double getRSquared()
-
fitToFunction
public void fitToFunction(double[] a, double[] residuals, double[][] covarMat)Description copied from class:NLConstrainedEnginefitToFunction communicates with 3 protected variables param, nPts, and ctrlMat ctrlMat is used as a wrapper for ctrl or lctrl. Evaluates the residuals or the Jacobian at a certain a[]- Specified by:
fitToFunctionin classNLConstrainedEngine- Parameters:
a- DOCUMENT ME!residuals- DOCUMENT ME!covarMat- DOCUMENT ME!
-
testData
private void testData()
Test data to test fitting of gaussian.
-
gauss
private double gauss(double x)
Gaussian evaluated at a point with given parameters
-
dgdA
private double dgdA(double x)
Partial derivative of gaussian with respect to A.
-
dgdx
private double dgdx(double x)
Partial derivative of gaussian with respect to x.
-
dgdsigma
private double dgdsigma(double x)
Partial derivative of gaussian with respect to sigma.
-
generateJacobian
protected Jama.Matrix generateJacobian()
Jacobian used for non-linear least squares fitting.
-
generateResiduals
protected Jama.Matrix generateResiduals()
Description copied from class:NLFittedFunctionCalculates the residuals for a given function, not implemented since some functions might prefer to only use a subset of data points, or not use yDataFitted if working during an iteration- Specified by:
generateResidualsin classNLFittedFunction- Returns:
-
-