Package gov.nih.mipav.model.algorithms
Class StochasticForests.Tree
- java.lang.Object
-
- gov.nih.mipav.model.algorithms.StochasticForests.Tree
-
- Direct Known Subclasses:
StochasticForests.TreeClassification,StochasticForests.TreeProbability,StochasticForests.TreeRegression,StochasticForests.TreeSurvival
- Enclosing class:
- StochasticForests
private abstract class StochasticForests.Tree extends java.lang.Object
-
-
Field Summary
Fields Modifier and Type Field Description protected doublealphaprotected java.util.Vector<java.lang.Double>case_weightsprotected java.util.Vector<java.util.Vector<java.lang.Integer>>child_nodeIDsprotected StochasticForests.Datadataprotected intdependent_varIDprotected java.util.Vector<java.lang.Integer>deterministic_varIDsprotected booleanholdoutprotected StochasticForests.ImportanceModeimportance_modeprotected java.util.Vector<java.lang.Integer>inbag_countsprotected booleankeep_inbagprotected booleanmemory_saving_splittingprotected intmin_node_sizeprotected doubleminpropprotected intmtryprotected intnum_random_splitsprotected intnum_samplesprotected intnum_samples_oobprotected java.util.Vector<java.lang.Integer>oob_sampleIDsprotected java.util.Vector<java.lang.Integer>prediction_terminal_nodeIDsprotected java.util.Randomrandomprotected java.util.Vector<java.lang.Double>sample_fractionprotected booleansample_with_replacementprotected java.util.Vector<java.util.Vector<java.lang.Integer>>sampleIDsprotected java.util.Vector<java.lang.Integer>split_select_varIDsprotected java.util.Vector<java.lang.Double>split_select_weightsprotected java.util.Vector<java.lang.Double>split_valuesprotected java.util.Vector<java.lang.Integer>split_varIDsprotected StochasticForests.SplitRulesplitruleprotected java.util.Vector<java.lang.Double>variable_importance
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description abstract voidallocateMemory()voidappendToFile(java.io.BufferedWriter bw)abstract voidappendToFileInternal(java.io.BufferedWriter bw)voidbootstrap()protected abstract voidbootstrapClassWise()voidbootstrapWeighted()voidbootstrapWithoutReplacement()protected abstract voidbootstrapWithoutReplacementClassWise()voidbootstrapWithoutReplacementWeighted()protected abstract voidcleanUpInternal()voidcomputePermutationImportance(java.util.Vector<java.lang.Double> forest_importance, java.util.Vector<java.lang.Double> forest_variance)protected abstract doublecomputePredictionAccuracyInternal()voidcreateEmptyNode()protected abstract voidcreateEmptyNodeInternal()voidcreatePossibleSplitVarSubset(java.util.Vector<java.lang.Integer> result)voiddispose()intdropDownSamplePermuted(int permuted_varID, int sampleID, int permuted_sampleID)java.util.Vector<java.util.Vector<java.lang.Integer>>getChildNodeIDs()java.util.Vector<java.lang.Integer>getInbagCounts()intgetNumSamplesOob()java.util.Vector<java.lang.Integer>getOobSampleIDs()java.util.Vector<java.lang.Double>getSplitValues()java.util.Vector<java.lang.Integer>getSplitVarIDs()voidgrow(java.util.Vector<java.lang.Double> variable_importance)voidinit(StochasticForests.Data data, int mtry, int dependent_varID, int num_samples, long seed, java.util.Vector<java.lang.Integer> deterministic_varIDs, java.util.Vector<java.lang.Integer> split_select_varIDs, java.util.Vector<java.lang.Double> split_select_weights, StochasticForests.ImportanceMode importance_mode, int min_node_size, boolean sample_with_replacement, boolean memory_saving_splitting, StochasticForests.SplitRule splitrule, java.util.Vector<java.lang.Double> case_weights, boolean keep_inbag, java.util.Vector<java.lang.Double> sample_fraction, double alpha, double minprop, boolean holdout, int num_random_splits)voidpermuteAndPredictOobSamples(int permuted_varID, java.util.Vector<java.lang.Integer> permutations)voidpredict(StochasticForests.Data prediction_data, boolean oob_prediction)booleansplitNode(int nodeID)protected abstract booleansplitNodeInternal(int nodeID, java.util.Vector<java.lang.Integer> possible_split_varIDs)
-
-
-
Field Detail
-
random
protected java.util.Random random
-
dependent_varID
protected int dependent_varID
-
mtry
protected int mtry
-
num_samples
protected int num_samples
-
num_samples_oob
protected int num_samples_oob
-
min_node_size
protected int min_node_size
-
deterministic_varIDs
protected java.util.Vector<java.lang.Integer> deterministic_varIDs
-
split_select_varIDs
protected java.util.Vector<java.lang.Integer> split_select_varIDs
-
split_select_weights
protected java.util.Vector<java.lang.Double> split_select_weights
-
case_weights
protected java.util.Vector<java.lang.Double> case_weights
-
split_varIDs
protected java.util.Vector<java.lang.Integer> split_varIDs
-
split_values
protected java.util.Vector<java.lang.Double> split_values
-
child_nodeIDs
protected java.util.Vector<java.util.Vector<java.lang.Integer>> child_nodeIDs
-
sampleIDs
protected java.util.Vector<java.util.Vector<java.lang.Integer>> sampleIDs
-
oob_sampleIDs
protected java.util.Vector<java.lang.Integer> oob_sampleIDs
-
holdout
protected boolean holdout
-
keep_inbag
protected boolean keep_inbag
-
inbag_counts
protected java.util.Vector<java.lang.Integer> inbag_counts
-
data
protected StochasticForests.Data data
-
variable_importance
protected java.util.Vector<java.lang.Double> variable_importance
-
importance_mode
protected StochasticForests.ImportanceMode importance_mode
-
prediction_terminal_nodeIDs
protected java.util.Vector<java.lang.Integer> prediction_terminal_nodeIDs
-
sample_with_replacement
protected boolean sample_with_replacement
-
sample_fraction
protected java.util.Vector<java.lang.Double> sample_fraction
-
memory_saving_splitting
protected boolean memory_saving_splitting
-
splitrule
protected StochasticForests.SplitRule splitrule
-
alpha
protected double alpha
-
minprop
protected double minprop
-
num_random_splits
protected int num_random_splits
-
-
Method Detail
-
dispose
public void dispose()
-
init
public void init(StochasticForests.Data data, int mtry, int dependent_varID, int num_samples, long seed, java.util.Vector<java.lang.Integer> deterministic_varIDs, java.util.Vector<java.lang.Integer> split_select_varIDs, java.util.Vector<java.lang.Double> split_select_weights, StochasticForests.ImportanceMode importance_mode, int min_node_size, boolean sample_with_replacement, boolean memory_saving_splitting, StochasticForests.SplitRule splitrule, java.util.Vector<java.lang.Double> case_weights, boolean keep_inbag, java.util.Vector<java.lang.Double> sample_fraction, double alpha, double minprop, boolean holdout, int num_random_splits)
-
grow
public void grow(java.util.Vector<java.lang.Double> variable_importance)
-
predict
public void predict(StochasticForests.Data prediction_data, boolean oob_prediction)
-
computePermutationImportance
public void computePermutationImportance(java.util.Vector<java.lang.Double> forest_importance, java.util.Vector<java.lang.Double> forest_variance)
-
appendToFile
public void appendToFile(java.io.BufferedWriter bw)
-
createPossibleSplitVarSubset
public void createPossibleSplitVarSubset(java.util.Vector<java.lang.Integer> result)
-
splitNode
public boolean splitNode(int nodeID)
-
createEmptyNode
public void createEmptyNode()
-
dropDownSamplePermuted
public int dropDownSamplePermuted(int permuted_varID, int sampleID, int permuted_sampleID)
-
permuteAndPredictOobSamples
public void permuteAndPredictOobSamples(int permuted_varID, java.util.Vector<java.lang.Integer> permutations)
-
bootstrap
public void bootstrap()
-
bootstrapWeighted
public void bootstrapWeighted()
-
bootstrapWithoutReplacement
public void bootstrapWithoutReplacement()
-
bootstrapWithoutReplacementWeighted
public void bootstrapWithoutReplacementWeighted()
-
allocateMemory
public abstract void allocateMemory()
-
appendToFileInternal
public abstract void appendToFileInternal(java.io.BufferedWriter bw)
-
getChildNodeIDs
public java.util.Vector<java.util.Vector<java.lang.Integer>> getChildNodeIDs()
-
getSplitValues
public java.util.Vector<java.lang.Double> getSplitValues()
-
getSplitVarIDs
public java.util.Vector<java.lang.Integer> getSplitVarIDs()
-
getOobSampleIDs
public java.util.Vector<java.lang.Integer> getOobSampleIDs()
-
getNumSamplesOob
public int getNumSamplesOob()
-
getInbagCounts
public java.util.Vector<java.lang.Integer> getInbagCounts()
-
splitNodeInternal
protected abstract boolean splitNodeInternal(int nodeID, java.util.Vector<java.lang.Integer> possible_split_varIDs)
-
createEmptyNodeInternal
protected abstract void createEmptyNodeInternal()
-
computePredictionAccuracyInternal
protected abstract double computePredictionAccuracyInternal()
-
bootstrapClassWise
protected abstract void bootstrapClassWise()
-
bootstrapWithoutReplacementClassWise
protected abstract void bootstrapWithoutReplacementClassWise()
-
cleanUpInternal
protected abstract void cleanUpInternal()
-
-