
Java GPU Enhanced Multi-histogram Volume Rendering Framework for Efficient Bio-medical Visualization

Ruida Cheng1, Alexandra Bokinsky2, Justin Senseney1, Matthew J. McAuliffe1

1. Center for Information Technology, National Institutes of Health, Bethesda, MD.

2. Geometric Tools, Inc. Chapel Hill, NC

INTRODUCTION

In this work, we present a novel implementation of a Java GPU based multi-

histogram volume rendering framework that integrates into the multi-dimensional

transfer functions [1]. We implement the framework within MIPAV [2], a Java

based bio-medical image processing and visualization tool. The integration

approach has been performed in two separate steps: Java OpenGL texture view-

aligned volume rendering ported from the original C++ implementation [1], and

the WildMagic [3] GPU ray-casting based volume rendering. We also demonstrate

several applications integrated into the GPU based multi-histogram framework,

including GPU based surface rendering, Nvidia 3D Vision stereo rendering. These

flexible features make the interactive multi-histogram volume rendering an

efficient framework within the MIPAV visualization.

METHODS
1. Java OpenGL based Multi-histogram Volume Rendering Framework

The implementation entirely relies on top of the Jogl [4] library. We ported

the framework as a prototypical implementation from the original C++

implementation. Figure 1 depicts the rendering pipeline.

Fig. 1 Java OpenGL based Multi-histogram volume rendering pipeline

The framework provides the high quality rendering with OpenGL 3D texture based

compositing. The whole framework is based on the OpenGL primitives. The multi-

histogram widgets are drawn with OpenGL geometry shapes. The rendering

pipeline uses the register combiners (GL_NV_register_combiners) and texture shader

(NV_texture_shader) for rasterizing. The Java OpenGL based framework relies

heavily on the OpenGL extension known as render to texture. Rasterization stage

implements the 3D texture view aligned rendering.

2. WildMagic GPU (GLSL) based Multi-histogram Volume Rendering Framework

2.1 Paradigm Shift from Java OpenGL Texture based Rendering to GPU Raycasting

based Rendering

The WildMagic GPU raycasting approach is multi-pass based rendering. The stream

model for volumetric ray-casting that exploits the intrinsic parallelism and efficient

communication on modern graphics chips. Our implementation builds upon the

functionality that is provided on current programmable graphics hardware. In

essence, the following passes are performed on the GPU using GLSL fragment

shader:

Pass 1: Render the volume bounding cube, pass in the Depth-Boundary texture with the back

face of the bounding volume cube.

Pass 2 : Each uniformly sampled (Figure 2) voxel based multi-pass rendering

1) At each sampling point, render the front face of the volume bounding cube.

2) Current position along the ray is determined by the rendering pass. The position is

calculated from the start position (front face) and end position (end face) of the ray and the

step size from the rendering pass.

3) Get the color from the 3D volume texture saved on the GPU.

4) Performing intensity lookup on multi-histogram. Go through each multi-histogram control

widgets, compute color and opacity for the voxel.

5) Save the color and opacity to the specified fragment output.

6) Step to the next sampling voxel, repeat from step 2. Trace ray from back to front.

7) Swap the rendering OpenGL FrameBuffer (target buffer for each entity, such as volume,

translucent and opaque surface, etc.).

FigFig.. 22 ParadigmParadigm ShiftShift fromfrom JavaJava OpenGLOpenGL texturetexture basedbased renderingrendering toto GPUGPU (GLSL)(GLSL) RaycastingRaycasting

Figure 3 depicts the rendering pipeline. During initialization, WildMagic library creates the

scene graph tree for the different renderers. The OpenGL FrameBuffer Object (FBO) is

created for rendering multiple translucent surfaces. The proxy geometry bounding-box is

created from the scalar volume, and saved as a scene node. The scalar volume data, gradient

map, multi-histogram map information are stored and passed to the shaders as texture images;

ShaderEffect contains the shader programs, and shader parameters for handling those texture

images. Once the ShaderEffect is created, the corresponding GLSL programs are loaded from

disk onto the GPU. The WildMagic setup the rendering context by render the volume

bounding box backface first, then it calls the sampling point based GPU raycasting routine as

described in Section 2.1.

2.2 GPU based Multi-histogram Volume Rendering Pipeline

Fig.3 WildMagic GPU (GLSL) based Multi-histogram Volume Rendering Pipeline

Figure 4. shows the comparable results from Java OpenGL extension and GPU

raycasting based multi-histogram rendering.

Fig.4 Multi-histogram Volume Rendering Results from Java OpenGL texture based and

GPU (GLSL) Raycasting based Rendering

3. Nvidia 3D Vision Stereo View for Multi-histogram Volume Rendering

 3D stereoscopic pipeline modifies the existing GPU raycast pipeline by splitting it into

left and right eye view frustums. The stereo viewer uses two different cameras to

build and render distinct scenes to each eye. The rendering pipeline routine is

encapsulated into the GPU raycasting render function with OpenGL quad buffer

enabled.

Fig.5 Nvidia 3D Vision multi-histogram volume rendering

CONCLUSIONS & FUTURE WORK
The most important implication of this work is the possibility to exploit the full

potential of high quality rendering within MIPAV visualization, which can be

useful for clinical studies and surgical planning. Based on the original multi-

histogram model, we build up an entirely new pipeline to implement raycasting

operation completely on GPU. When preprocessing the raw data volume, GM,

normal, Laplacian and multi-histogram computations are performed on CPU,

which still costs time. The future work will address those problems by OpenCL

operations on both CPU and GPU.

 REFERENCES
[1] J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume Rendering Using

Multi-Dimensional Transfer Functions and Direct Manipulation

Widgets,” Proc. IEEE Visualization Conf. '01, pp. 255-562, 2001.

[2] MIPAV (http://mipav.cit.nih.gov). From McAuliffe MJ, Lalonde FM, McGarry D,

Gandler W, Csaky K, Trus BL. Medical Image Processing, Analysis &

Visualization In Clinical Research. IEEE COMPUTER-BASED

MEDICAL SYSTEMS (CBMS) 2001, 381-386

[3] WildMagic library, http://www.geometrictools.com

[4] Jogl library, http://jogl.dev.java.net

120 Hz Monitor

Shutter glasses

Quadro FX 4800

IR Emitter

Java OpenGL Extension Texture Aligned WildMagic GPU Raycasting

