
http://mipav.cit.nih.gov

Segmentation and Annotation of Medical Images with MIPAV

Justin Senseney

SenseneyJ@mail.nih.gov
dcb.cit.nih.gov/~senseneyj

Biomedical Image Processing Research Services Section
Center for Information Technology
mipav.cit.nih.gov

MIPAV Team

Employees
Ruida Cheng
William Gandler
Matthew McAuliffe
Evan McCreedy
Justin Senseney

Fellows
Sara Shen

Contractors
Alexandra Bokinsky, Geometric Tools Inc. (Visualization)
Olga Vovk, SRA International Inc. (Technical Writing)

Alumni
Paul Hemler, Agatha Munzon, Nishith Pandya, Beth Tyriee, Hailong Wang

Agenda

- Review
- VOI
- Creation
- Manipulation
- Masks
- Creation
- Conversion
- Morphological operators (2D and 3D)
- Paint
- Creation
- Fill
- Segmentation
- Fuzzy C-means
- Level set
- Thresholding
- Watershed
- Histogram
- Equalization and matching

Review

- MIPAV as collaboration tool
- Opens all image formats
- Scriptable
- Quantitative and qualitative

Volume of interest

Agenda

- VOI (Volume of interest)
- Definition
- Creation
- Annotations
- Points
- Lines
- Curves
- Cube
- Manipulation
- Split
- Undo/Redo
- Cut/Copy/Paste
- Propagation

VOI

- Volume of interest - one or more contours on an image

Annotation

- Save names and notes
- Place in text location, move arrow

Point

- Shift for multiple points
- Delete removes, renumbers to keep consecutive
- Can move

Protractor

- Initial point is intersection of two lines
- Draw outwards
- Re-click to orient angle

Square

- Start with any corner, drag in any direction
- To modify, click a point, becomes "active" VOI.

Circle

- Start at circle center
- Drag entire shape

Polyline/polygon

Levelset

- Looks for closest intensity value
- Topographic map
- Once active, alt+hold down mouse to modify boundary.

Livewire

- Larger changes in magnitude with smaller distance.
- Minimum cost

Live wire cost function \qquad
Choose cost function for live wire

- Gradient magnitude and direction

Laplacian medialness
Intensity

OK	Cancel

Cube

- " 0 " is always the initial curve
- Numbering does not indicate slice

Split

- Splits into same VOI, different contour
- Each contour is closed
- Multiple VOIs split
- Multiple contours split

New VOI

- Open/closed VOIs cannot be combined
- Statistics

Quiz

- Manual VOI change using ALT+hold down mouse. Which direction is required?
- A. clockwise
- B. counter-clockwise

Answer: Both, but choose one each time

Undo/Redo

- Applies to VOI operations only
- Keyboard shortcut: Ctrl+Z (Undo), Ctrl+Y (Redo)

Cut／Copy／Paste

品䃂蕴
－Cut－delete，store to paste
－Copy－store to paste
－Paste－Place active VOI in current slice of active image

Propagate

- Down one slice
- Up one slice
- To all slices

(X) VOI Properties/Statistics - 1604282459

VOI Browser

書署 16
\& 8
VOIContour_0
$-\vec{a}_{x} \times$ Plane
$\stackrel{\rightharpoonup}{r}$ Y Plane

- $\mathrm{F}_{\mathrm{z}} \mathrm{ZPlane}$
- Slice 0

9- $\frac{-1}{\text { Slice } 1}$

Statistics to calculate:
\square \# of Voxels
\square Volume
\square Area
\square Perimeter
$\square \mathrm{Min}$ Intensity
\square Max Intensity
\square Avg Voxel Intensity
\square Std Dev of Intensity
\square Sum Intensities
\square Geometric center
\square Center of Mass
\square Principal Axis
\square Eccentricity
\square Major axis length
\square Minor axis length
\square Coefficient of skewness
\square Coefficient of kurtosis
\square Largest slice distance
\square Largest distance
\square Median Intensity

And

- Default is in place

Fill

- Fills with zeros

Evolve Boundary

- Active contour
- Combine with propagation to adjacent slices
- Small Gaussian sensitive to noise

Interpolate

- Define contours on non-contiguous slices
- Contours part of same VOI
- Must be selected

Slice 86

Slice 89

Slice 95

Break

Mask
Defined on pixels

Create new mask

Open/Save mask

Conversion

VOI menu options

36
DCIT

AND Mask operation

Performs actual conversion

Morphology

Mathematical Morphology

- Erosion
- Dilation
- Opening
- Closing
- Distance maps

Mathematical Morphology

Result: Erosion + Dilation $=$ Opening

Opening

O Structuring Element

2D 3×3 structuring element

0	0	0
0	1	0
0	0	0

0	0	0
0	1	0
0	0	0

3D $3 \times 3 \times 3$ structuring element

Mathematical Morphology

Source object

Dilation

Erosion

Closing

O Structuring Element

Result: Dilation + Erosion $=$ Closing

Mathematical Morphology

Noise Removal

Distance transform

Object distance - minimum Euclidian distance
from any edge to a point interior to the object

Background distance - minimum Euclidian distance
from any edge to a point exterior to the object (i.e. background)

Paint

Defined on masks

Brush

Advanced Paint

(8) Advanced Paint Tools			
\ulcorner Paint Mask Palette			
	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16
17	18	19	20
21	22	23	24
Options			
Number of masks:		6	Resize
Load labels			labels
Load masks			masks
Import from VOIs			to VOIs
Hide paint			masks
Show label text			ortcuts
Collapse masks/paint		Autosave mask	
\square Close Help			

Region Grow

Erasers

(3) 161	$95 / 191$	M:1.0	\square	\square	X

Propagation

- Same as VOI options
- No active contour solution

Paint brush options

- Brush size
- Brush pattern

- Brush intensity

Paint display options

- Select color
- Change opacity
- Show border

Mask options

- Just like VOI mask options, another conversion tool

Undo paint

- Only applies to paint
- Does not change masks

Calculate volume

- Units of image
- Resolution of image

Power paint tools

OCIT

Segmentation

Watershed Segmentation

- Watersheds are a classic field of topography.
- Example of a watershed: Great Divide of the U.S.
- A drop of water falling one side flows down until it reaches the Atlantic ocean, whereas a drop falling on the other end flows until it reaches the Pacific ocean.
- The above two watersheds or catchment basins are separated by what is termed the watershed line.
- Catchment basins: minima of the watershed
- Watershed line: maxima of the watershed

Watershed Segmentation

- Find the lowest point in each basin and begin "flooding".
- When two basins meet a watershed point (1D) is identified and a dam is formed.
- Continue flooding until all basins and watershed points are formed.
- Note: this method can produce over segmentations.

Watershed Segmentation: Interactive

- Find the lowest point in each basin identified by a Region of Interest (ROI) and force the gradient magnitude to zero at all ROIs. Begin "flooding" in those regions.
- When two basins meet a watershed line (2D) is identified and a dam is formed.
- Continue flooding until all ROI basins until all regions are flooded.

Segmented basins

Voxel Classification

-Groups of voxels are not physically connected then the segmentation technique is termed voxel classification and voxels sets are referred to as classes
-Cluster methods do not inherently incorporate spatial information and therefore can be sensitive to factors like intensity inhomogeneities.

Fuzzy C-means

T1 - MRI

Hard segmentation - G, W,CSF

Fuzzy Gray

Fuzzy White

Fuzzy CSF

Segmentation Evaluation

- Compared to ground truth VOI
- Requires converting masks to VOIs

Acknowledgments

- Images from NCI's Cancer Imaging Archive: hitip://cancerimagingarchive.net/
- Examples from NIH collaborators.

Thank you!

