
 INTRODUCTIONINTRODUCTION

METHODSMETHODS

DISCUSSION AND CONCLUSIONDISCUSSION AND CONCLUSION

REFERENCESREFERENCES

 Ruida Cheng1, Alexandra Bokinsky3, Paul F. Hemler2, McCreedy Evan1, Matthew J. McAuliffe1

 1. Center for Information Technology, National Institutes of Health, Bethesda, MD.

 2. Hampden-Sydney College, Hampden-Sydney, VA.

 3. Geometric Tools, Inc. Chapel Hill, NC

 Ruida Cheng1, Alexandra Bokinsky3, Paul F. Hemler2, McCreedy Evan1, Matthew J. McAuliffe1

 1. Center for Information Technology, National Institutes of Health, Bethesda, MD.

 2. Hampden-Sydney College, Hampden-Sydney, VA.

 3. Geometric Tools, Inc. Chapel Hill, NC

 In recent years the number and utility of 3D rendering frameworks has

grown substantially. A quantitative and qualitative evaluation of the

capabilities of a subset of these systems is important to determine the

applicability of these methods to specific medical visualization tasks.

Libraries evaluated in this paper include the Java3D API, Jogl (Java

OpenGL API), a multi-histogram based rendering method, and the

WildMagic visualization libraries. Volume renderer implementations using

each of these frameworks were developed using the platform-independent

Java programming language. In addition, all four frameworks were

implemented or ported to the Java language thereby allowing a complete

Java based solution. Quantitative performance measurements (frames per

second, memory usage) were used to evaluate the strengths and weaknesses

of each renderer implementation.

Jogl GPU (GLSL) based Volume Rendering

We used the Stegmaier[2] method of single pass volume raycasting to

implement Jogl GPU (GLSL,NV_fragemnt_program2) based volume

rendering in Java. 3D texture data values are transferred to the graphics card,

and single pass volume rendering on per pixel basis is performed. For each

pixel of the final image a single ray is traced independently through the

volume. On each fragment, sampling along the ray path and accumulating the

intensity and opacity are performed.

 Java Based Volume Rendering

Java3D based Volume Rendering

Java3D renders 3D volumes with an image scene graph approach (Fig.1) .

Texture and raycast volume rendering

have been implemented. 3D texture

volume rendering uses view texture

aligned slicing with tri-linear

interpolation. Raycast volume rendering

 uses the classical ray cast sampling and

compositing. High quality rendering

results are shown in Fig.2.

Pros:

• Java3D can render with high quality.

• Multi-histogram method has an intuitive user-interface for transfer

function manipulation and has good rendering quality.

• Jogl GPU (GLSL) renderers the volume quickly with low memory

usage.

• WildMagic has the best rendering quality and also allows the users

greater freedom to control the shader parameters.

Cons:

• Java3D library has internal memory management issues.

• Multi-histogram method is CPU based, performance can be slow

when exposing more detailed volume information.

• Jogl GPU (GLSL) shader assembly module is difficult to extend.

• WildMagic memory management requires improvement.

Jogl Multi-histogram based Volume Rendering

Using the Jogl (Java binding for OpenGL) library, we implement a multi-

histogram volume rendering method [1]. The multi-histogram method is based

on data values, gradient magnitude, and second directional derivatives that

enable better discrimination between different material properties and boundaries. .

Fig.3 Fig.3 illustrates the relationship

between data value and it‟s derivatives.

At the center of the boundary, the gradient

magnitude (f „) is high and the second

derivatives (f “) is zero. Thus, boundary

is enhanced from the materials. The Multi-

histogram method allows interactive volumetric

shading and shadowing to the traditional

3D texture based volume rendering

pipeline. Fig.4 shows some

multi-histogram volume rendering results.

• [1]. J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume Rendering

Using Multi-Dimensional Transfer Functions and Direct Manipulation

Widgets,” Proc. IEEE Visualization Conf. '01, pp. 255-562, 2001.

• [2]. S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, “A Simple and Flexible

Volume Rendering Framework for Graphics Hardware based Raycasting,”

Proceedings of Volume Graphics 2005, Stony Brook, New York, USA, pp.187-

195, 2005

• [3]. L. Mroz and H. Hauser. RTVR - a flexible java library for interactive

volume rendering. In IEEE Visualization 2001.

http://citeseer.ist.psu.edu/mroz01rtvr.html

Fig.1 Java3D Image SceneGraphFig.1 Java3D Image SceneGraph

Fig.2 Java3D textureFig.2 Java3D texture--based volume renderingbased volume rendering

Fig.3 MultiFig.3 Multi--dimensional Transfer Function.dimensional Transfer Function.

Fig.4 MultiFig.4 Multi--histogram Volume Renderinghistogram Volume Rendering

Pseudo code of a fragment based volume raycaster is shown in Fig.5.

Fragments are processed independently

of each other. The Jogl GPU based method

improves performance using the parallel

processing power of the graphics card.

Fig.6 shows the Jogl GPU based volume

rendering results.

 Fig.5 Fragment RaycastingFig.5 Fragment Raycasting

Fig.6 Jogl (GLSL shader) based Volume RenderingFig.6 Jogl (GLSL shader) based Volume Rendering

WildMagic GPU (Cg) based Volume Rendering

Volume rendering in MIPAV is currently implemented using the WildMagic

Shader library. The WildMagic Shader (Jogl based) library dynamically loads

and compiles shaders written in the Cg shading language. The WildMagic

Shader library implements single pass or multipass rendering with one or more

vertex and pixel shaders. Blending modes can be specified for multi-pass

shaders which accumulate color results between passes. Users can change the

shader input parameters (material properties, lighting, and viewing transform)

on the fly while the application is running. Fig.7 shows the WildMagic GPU

based volume rendering results.

PERFORMANCE MEASUREPERFORMANCE MEASURE

Fig.7 WildMagic GPU based Volume RenderingFig.7 WildMagic GPU based Volume Rendering

All performance measurements were conducted on a PC with the NVIDIA

GeForce 6800 GS based graphics card. For each rendering method, we

capture the average frame rate and memory usage.

