Visualization in MIPAV

DCIT

Visualization in MIPAV

Alexandra Bokinsky, PhD
Geometric Tools, Inc. Ruida Cheng
National Institutes of Health

3D Visualization Outline

- 3D Image Processing
- Volume rendering
- Surface extraction and rendering
- Advanced rendering techniques
- Visualization Applications in MIPAV
- Diffusion Tensor Visualization, ISO-Surface rendering, virtual endoscopy.

Course Goals

Know what 3D visualization capabilities are available in MIPAV
Familiar with the tools and user-interface Able to start creating visualizations

A Brief Introduction to 3D Medical Images

Inferior
Medical images taken of the human body are acquired or displayed in three main orientations:
1.Coronal orientation: in a cross section (plane), for example, across the shoulders, dividing the body into front and back halves
2.Sagittal orientation: in a cross section (plane), for example, down the middle, dividing the body into left and right halves
3.Axial orientation: in a cross section (plane), perpendicular to the long axis of the body, dividing the body into upper and lower halves

Positions	Opacity	Renderer	LUT	Display	Slices

$\square \square \square \square \square$ Gradient Map

Opacity function for image A

Transfer function precision adjustment

Voxel Thickness \& Resolution

Y-Dimension(2nd)

Voxels, of 3D clinical images, are typically NOT isotropic. This fietur should be sece nnted for in processing sugorithms.

3D Visualization
Image slice index [total number slices=89]

Launch GPU-Based

Orthogonal Plane View

Volume Rendering

Volume Rendering

- Opacity filter
- Gradient magnitude filter
- Color Lookup Table
- Global opacity and blending
- 2D Histogram filters
- Clipping and Sculpting Volumes

Gradient Magnitude Filter

\section*{S manix_angio_sm_clone

GM Filter Off

Transfer function precision adjustment

706.3	711.3	716.3	
Blending			
Image A	0.75 A	$0.5 \mathrm{~A} / \mathrm{B}$	0.75 B

Select Color Lookup Table AOCing Oolor

BlackBody	v

Volume Rendering Modes

S manix_angio_sm1

\checkmark Display RayCast Volume
\square Display Slices
\square Display Surface
Set render mode

Composite
Suface
Composite Surface
Custum Blend
\square MultiHistogram
Blend
Volume Blend
Volume Samples Mouse Released
Volume Samples Mouse Rotation Surface Extraction

Extract Mesh from Volume Intensity Level

Digitally Reconstructed Radiograph

Composite

Modifying Global Opacity

2D Histogram Tool

Positions	Opacity	Renderer	Multifistogram

Two histogram filters

2D Histogram Tool

Volume Clipping

User-draw sculpt region

After volume sculpting

Volume Rendering Demo

- Opacity filter
- Gradient magnitude filter
- Color Lookup Table
- Global opacity and blending
- 2D Histogram filters
- Clipping and Sculpting Volumes

Creating and Rendering Surfaces

Creating Surfaces
Adding a surface to the viewer
Color and material
Smoothing and decimation
Painting on surfaces

Surface Extraction from 2D Viewer

Surface Extraction from 2D Viewer

WYSIWYG Surface Extraction

\checkmark Display RayCast Volume
\square Display Slices
\square Display Surface
Adjust the volume opacity.
Display the volume in Surface mode.
Press Extract Mesh Button

WYSIWYG Surface Extraction

Save the mesh to a file.
Surface visible in slice view

VOI Surface Generation

A Brainix_clone
Extract Mesh from VOI

VOI Surface Generation

B Brainix_clone

$\ell \otimes \mathbb{E} \mathbb{E}^{\square} \mid$ Brush size: 1
-
Surface list
BrainixVOISurface.sur

| Add Remove |
| :---: | :---: |

Surface options

Surface color Advanced Options
Surface Texture
Opacity

Number of triangles 311560
Volume of mesh 0.08574176
Surface area 3.3937778
Level of Detail

Opacity

$\left.\right|^{1}$

Surface and VOIs

Adding a Surface from File

Brainix_clone

Add Surface to view

Opacity

```
\(\square\)
```

Number of triangles 311560
Volume of mesh 0.08574176
Surface area 3.3937778
Level of Detail

Smooth Surface and Surface Decimation

Volume of mesh 0.08574176
Solid, line, or point

Painting on Surface

Strainix clone

Surface options

Number of triangles 0
Volume of mesh 0.0
Surface area 0.0
Level of Detail

I

Multiple Surfaces

Creating and Rendering Surfaces

Creating Surfaces
Adding a surface to the viewer
Color and material
Smoothing and decimation
Painting on surfaces

Saving Visualization Data

File Options Toolbars

Record Animation
Save current parameters

ImageA

\checkmark Log scale (Histogram)
Number of colors:
LUT:

Advanced 3D Visualization

Image Fusion

4D Volume Rendering
3D Stereo viewing

Image Fusion

4D Volume Rendering

8 heart4D_128_clone
File Options Toollars

Positions 4D Opacity Renderer LUT
Select Sub-Volume

Stereo View

Applications of MIPAV 3D Visualization

DTI Visualization

DTI Visualization

DTI Visualization

DTI Visualization

Visual Endoscopy Simulation

SVM based Automatic Prostate Segmentation on 3D

Center slice as the training base

Haralic Texture

Features Extraction

Segmentation

MRI images

Automatic

Segmentation
on the rest slices

$\bigcirc \circ$

3D Printing

3D Visualization

svm options
 - SvM Binary Class \bigcirc svm Mutit class

oK	Cancel	Help

Surface

Merged 3D Cloud

Reconstruction

OpenCL

Open Compute Language
Use the Graphics Processing Unit (GPU) as a general massively parallel compute device.
Currently available for FFT
Soon to be available in other MIAPV Algorithms

M I P A V

Medical Image Processing, Analysis, \& Visualization

