

http://mipav.cit.nih.gov

MEDICAL IMAGE PROCESSING AND REGISTRATION IN MIPAV

Evan McCreedy

email: mccreedy@mail.nih.gov

(301) 496-3323

Biomedical Image Processing Research Services Section (BIRSS)

http://mipav.cit.nih.gov

MIPAV TEAM

Employees

Ruida Cheng

William Gandler

Matthew McAuliffe

Evan McCreedy

Contractors

Alexandra Bokinsky, Geometric Tools Inc. (Visualization) Olga Vovk, SRA International Inc. (Technical Writing)

<u>Alumni</u>

Paul Hemler, Agatha Munzon, Nishith Pandya, Justin Senseney, Sara Shen, Beth Tyriee, Hailong Wang

MIPAV ALGORITHMS

- Filters
 - Gaussian blurring, Laplacian, curvature, other higher order derivatives, median, gradient magnitude, edge detection, etc.
 - Anisotropic diffusion
 - Frequency domain (FFT, etc)
- Registration
 - $\bullet \ Landmark-least \ squares, \ Thin-plate \ spline$
 - AFNI registration technique
 - General Linear Registration (multiple cost function including, normalized and standard mutual information, correlation, leastsquares, etc) and user selectable degree of freedom (DOF, 12 – affine, 6 – rigid,)
- Image transformations or resampling
 - nearest neighbor, tri-linear, sinc, bSpline and others interpolation methods.
- Skull stripping (BSE, BET)
- Midsagittal line alignment
- Histogram equalization and matching
- Shading correction
- Microscopy
 - FRET, FRAP, Co-localization

MIPAV ALGORITHMS (CONT.)

- Morphological operators (2D and 3D)
 - erode, dilate, open, close, distance, etc.
- Segmentation
 - Fuzzy C-means
 - Level set
 - Thresholding
 - Watershed
- Reslice 3D dataset to isotropic voxels
 - linear, cubic, cubic bspline.
- Surface extraction
- And more...

IMAGE PROCESSING DIMENSIONALITY

- 2D image plane (slice)
- 2.5D (3D treated as set of slices)
- 3D (3D processed as volume)
- 3.5D
- 4D

1	🕅 MIPAV 🛛 v	5.4.30	ptions	- 🔳 🕫		Bearing 1994	-	- 67	×	J
	Display	File	Other							
l										
l										
l										
l		Star	rt DICOM	receiver on s	tart-up					
		🖌 Mu	lti-Thread	ing Enabled(4	cores)					
		GP	U Comput	ing Enabled	GPU Inf	fo				
		Sav	e dialog se	ttings						
		🖌 Glo	bal data p	rovenance	pav\dat	taprovenance.	xmp			
		🗌 Ima	ige level da	ta provenanc	e					
		🗾 LA	X/Preferen	ces memory	check					
		Che	eck on clos	ing frame						
		🖌 Log	errors to:		ojects\r	nipav\mipav.1	og			
l		🕑 Sho	w data/del	ougging outpu	ut window					
l		Debu	g levels					1		
		M	inor 📃 A	Algorithm	FileIO	Comms 🔲	Scripting			
l										
			Apply	(Cancel	Help				
l										J

FILTERS

🔀 Gaussian Blur								
Scale of the Gaussian								
X dimension (0.0 - 10.0)		1.0						
Y dimension (0.0 - 10.0)		1.0						
Z dimension (0.0 - 10.0)		1.0						
\checkmark Use image resolutions to normalize Z scale								
Corrected scale = 0.1935								
Options								
☑ Use separable convolution kernels								
Process each slice independently (2.5D)								
Use OpenCL								
Color channel selection								
⊮ Process red channel								
 Process green channel Process blue channel 								
								Destination
New image	Whole image							
○ Replace image	○ VOI	 VOI region(s) 						
OK Car	cel	Help						

SCALE-SPACE

- Scale-space of the MR image of the head
- Produced by convolving the Gaussian of increasing standard deviation with the MR image

GRADIENT MAGNITUDE 1D EXAMPLE

11

IMPORTANCE OF SCALE

 $I_{GM}(x,y)$ = $(I_x{}^2 \ + I_y{}^2)^{0.5} \$ - gradient magnitude

IMPORTANCE OF SCALE (GRADIENT MAGNITUDE OF CT IMAGE)

Axial CT image

Gradient magnitude (sigma = 1.0)

Gradient magnitude (sigma = 4.0) 13

LAPLACIAN

Original signal

First derivative

Second derivative

 $\nabla^2 I = I_{xx} + I_{yy}$

LAPLACIAN

Original MR Image

Laplacian of MR Image

Zero crossings

MEDIAN FILTERING

Image with noise

Median filter image

Gaussian smoothed image

MEDIAN FILTERING

Original MR Image

1 Iteration

MIPAV: EXAMPLE OF ANSIOTROPIC DIFFUSION ON CT IMAGES OF THE KIDNEY.

Before

FOURIER TRANSFORM EXAMPLES

SHADING CORRECTION

REGISTRATION • Two main classes of problems

- Intra-modality
 - Intra patient
 - Inter patient
- Inter-modality
 - Intra patient
 - Inter patient
- Two main methods
 - Extrinsic landmark methods using surfaces, lines, points.
 - Can be automatic or manual identification of landmarks.
 - Intrinsic image intensity base using voxel similarity measures (i.e. Cross correlation, mutual information, etc.)

- Transformation matrix establishes geometrical correspondence between coordinate systems of different images. It is used to transform one image into the space of the other.
- Many different types but generally in biomedical imaging only a few classes are use:
 - Rigid body
 - Global rescale
 - Affine
 - Non-linear

- Rigid-body transformations include translations and rotations. Preserve all lengths and angles.
 - 2D -> 3 Degrees of Freedom (DOF)
 - 3D -> 6 DOF (3 translation and 3 rotation)

- Global rescale transformations include translations, rotations, and a single scale parameter. Preserve all angles and **relative** lengths.
 - $-2D \rightarrow 4$ DOF (2 translation + 1 rotation + 1 scale)
 - 3D -> 7 DOF (3 translation + 3 rotation + 1 scale)

- Affine transformations include translations, rotations, scales, and/or skewing parameters. Preserve straight lines but necessarily not angles or lengths.
 - $-2D \rightarrow 5 \text{ or } 7 \text{ DOF} (2 \text{ translation} + 1 \text{ rotation} + 2 \text{ scale} + 2 \text{ skewing})$
 - 3D -> 9 or 12 DOF (3 translation + 3 rotation + 3 scale + 3 skewing)

- Non-linear transformations are local deformations and therefore they are the most general.
 - 2D -> many DOF
 - 3D -> many DOF

INTERPOLATION OPTIONS

Trilinear
Cubic Lagrangian
Quintic Lagrangian
Heptic Lagrangian
Heptic Lagrangian
Windowed Sinc
Bspline 3rd Order
Bspline 4th Order

4th Order Bspline interpolation

Nearest neighbor interpolation

INTERPOLATION DIFFERENCES

Trilinear

Cubic Lagrangian

Windowed Sinc

Contrast increasing

- Extrinsic Landmark based methods
 - can require user interaction
 - Manual identification user intensive
 - Automatic identification can be problematic but depends on task and modality
 - can be shown to be less reliable and accurate than intensity based methods. Depends on modality and task.
 - once landmarks are identified registration is very fast.

- Intrinsic image intensity at voxels
 - "Best" registration is identified by the minimum of some
 "cost" function.
 - The cost function is an assessment of how good the alignment between the objects to be registered.
 - A high cost should equate to a poor alignment
 - A low cost should equate to a good alignment
 - Goal
 - Find the transformation (matrix) which minimizes the cost function.

- Cost functions
 - Intra-modality with consistent mapping of intensity values
 - Least squares
 - Inter-modality or Intra-modality where mapping of intensity values might vary.
 - Normalized correlation
 - Correlation ratio
 - Normalized mutual information

• Normalized Mutual Information (NMI) – is base on the entropy of the images (histogram) and the relationship between voxels – joint entropy.

 $NMI = (H(x) + H(y)) / H(x,y) \qquad H() = entropy$

 $= -\sum p_i \log p_i$ where p = (histogram count in bin) / total count

- Entropy is a measure of the disorder or unavailability of energy within a closed system.
- Entropy will have a maximum value if all values of the histogram have equal probability of occurring (flat histogram) and a minimum when all except one value has a probability of zero.
 - For example, blurring an image reduces noise and thus sharpens the images histogram, resulting in reduced entropy.

LANDMARK REGISTRATION TECHNIQUES

Least squares registration (rotation & translation: rigid) Thin plate splines registration (rotation, translation and scale: non-linear)

Grid with landmarks points

Least-Squares Fitting of 2 Point Sets

Image A with 7 landmarks

Image B with 7 homologous landmarks

Images supplied by Karl Csaky

Image A (heated metal LUT) registered and overlaid onto Image B (gray LUT)

SKULL STRIPPING - BET

Based on: Brain Extraction Tool (BET)

MIPAV UTILITIES

- Image conversion
 - Gray <==> RGB
 - 4D <==> 3D
 - Between data types
- Image cloning
- Rotation / flipping
- Cropping
- Mask-based quantification
- Intensity projection generation
- Slice extraction / manipulation
- Intensity replacement
- Invert intensity
- Add padding
- Correct spacing
- Image math (operations performed on one image abs. value, addition, log, etc.)
- Image calculator (operations performed using two source images difference, multiplication, average, etc.)

THANK YOU!